An integrated experimental and modeling study of the effect of solid electrolyte interphase formation and Cu dissolution on CuCo2O4-based Li-ion batteries
Yasir Ali
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, South Korea
Search for more papers by this authorCorresponding Author
Seungjun Lee
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, South Korea
Correspondence
Seungjun Lee, Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, 04620, South Korea.
Email: [email protected]
Search for more papers by this authorYasir Ali
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, South Korea
Search for more papers by this authorCorresponding Author
Seungjun Lee
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, South Korea
Correspondence
Seungjun Lee, Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, 04620, South Korea.
Email: [email protected]
Search for more papers by this authorFunding information: the Ministry of Education, Grant/Award Number: 2018R1D1A1B07045257; the Ministry of Science and ICT, Grant/Award Number: 2018R1A5A7023490; the Ministry of Trade, Industry and Energy, Grant/Award Number: 20194030202320
Summary
We develop an integrated framework of modeling and experiments to explain the capacity fade of the lithium-ion battery containing CuCo2O4 as the anode. The electrical conductivity, diffusion coefficient, and open-circuit voltage curves are measured from the fabricated electrodes, and the obtained properties are used for the input parameters of the side-reaction coupled electrochemical model. During the simulation, two scenarios of the degradation are considered: only the solid electrolyte interphase (SEI) formation, and coupled degradation of the SEI formation and the Cu dissolution/deposition. Sensitivity analysis is carried out with different SEI molar mass, SEI conductivity, and dissolution parameters, to evaluate the effect on the cell capacity fade. The simulation shows that active material dissolution in ternary metal oxide electrodes plays a critical role in capacity fading, and the interactions of SEI formation and active material dissolution determine the battery life. The experiment and simulation integrated framework developed in this study can be used to predict the capacity fade of the battery systems with conversion-based electrodes.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable - no new data generated, or the article describes entirely theoretical research.
NOMENCLATURE
-
- cc_ch
-
- constant current charging
-
- cv_ch
-
- constant voltage charging
-
- cc_dch
-
- constant current discharging
-
- i_app
-
- applied current
Supporting Information
Filename | Description |
---|---|
er7359-sup-0001-FigureS1.tifTIFF image, 2.2 MB | Figure S1. SEM image of the prepared CCO powder with (A) 100 k and (B) 200 k resolution. (C) XRD pattern and (D) Raman spectra of the developed CCO powder |
er7359-sup-0002-FigureS2.tifTIFF image, 557.4 KB | Figure S2. XRD spectra of the CuCo2O4 anode electrode at the charge and discharge states. Three intense peaks correspond to the Ni substrate. The insets show the magnified view |
er7359-sup-0003-FigureS3.tifTIFF image, 1 MB | Figure S3. (A) X-ray photoelectron survey spectra. (B) Co 2p, (c) Cu 2p, and (D) O1s spectra of the CuCo2O4 electrode at the charged and discharged state |
er7359-sup-0004-FigureS4.tifTIFF image, 164.8 KB | Figure S4. Open circuit voltage vs SOC curve of the CCO electrode |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Wadewitz D, Gruner W, Herklotz M, et al. Investigation of copper-cobalt-oxides as model Systems for Composite Interactions in conversion-type electrodes for lithium-ion batteries. J Electrochem Soc. 2013; 160(8): A1333-A1339. doi:10.1149/2.014309jes
- 2Sharma Y, Sharma N, Rao GVS, Chowdari BVR. Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J Power Sources. 2007; 173(1): 495-501. doi:10.1016/j.jpowsour.2007.06.022
- 3Pender JP, Jha G, Youn DH, et al. Electrode degradation in lithium-ion batteries. ACS Nano. 2020; 14(2): 1243-1295. doi:10.1021/acsnano.9b04365
- 4Kang W, Tang Y, Li W, et al. Porous CuCo2O4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. Nanoscale. 2014; 6(12): 6551-6556. doi:10.1039/c4nr00446a
- 5Ma J, Wang H, Yang X, Chai Y, Yuan R. Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries. J Mater Chem A. 2015; 3(22): 12038-12043. doi:10.1039/c5ta00890e
- 6Aqueel Ahmed AT, Hou B, Inamdar AI, Cha S, Kim H, Im H. Morphology engineering of self-assembled nanostructured CuCo 2 O 4 anodes for lithium-ion batteries. Energy Technol. 2019; 7(7):1900295. doi:10.1002/ente.201900295
- 7Niu F, Wang N, Yue J, Chen L, Yang J, Qian Y. Hierarchically porous CuCo2O4 microflowers: a superior anode material for Li-ion batteries and a stable cathode Electrocatalyst for Li-O2 batteries. Electrochim Acta. 2016; 208: 148-155. doi:10.1016/j.electacta.2016.05.026
- 8Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010; 55(22): 6332-6341. doi:10.1016/j.electacta.2010.05.072
- 9Wang A, Kadam S, Li H, Shi S, Qi Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Comput Mater. 2018; 4(1): 1-26. doi:10.1038/s41524-018-0064-0
- 10Jadhav HS, Pawar SM, Jadhav AH, Thorat GM, Seo JG. Hierarchical Mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage. Sci Rep. 2016; 6(1): 1-12. doi:10.1038/srep31120
- 11Zhang X, Gao Y, Guo B, et al. A novel quantitative electrochemical aging model considering side reactions for lithium-ion batteries. Electrochim Acta. 2020; 343:136070. doi:10.1016/j.electacta.2020.136070
- 12Mandli AR, Kaushik A, Patil RS, et al. Analysis of the effect of resistance increase on the capacity fade of lithium ion batteries. Int J Energy Res. 2019; 43(6): 2044-2056. doi:10.1002/er.4397
- 13Jiang F, Su Q, Li H, Yao L, Deng H, Du G. Growth of ultrafine CuCo2O4 nanoparticle on graphene with enhanced lithium storage properties. Chem Eng J. 2017; 314: 301-310. doi:10.1016/j.cej.2016.11.064
- 14Vijayakumar S, Lee SH, Ryu KS. Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochim Acta. 2015; 182: 979-986. doi:10.1016/j.electacta.2015.10.021
- 15Bhardwaj M, Suryawanshi A, Fernandes R, et al. CuCo2O4 nanowall morphology as Li-ion battery anode: enhancing electrochemical performance through stoichiometry control. Mater Res Bull. 2017; 90: 303-310. doi:10.1016/j.materresbull.2016.12.014
- 16Wu F, Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci. 2017; 10(2): 435-459. doi:10.1039/c6ee02326f
- 17Zhan C, Wu T, Lu J, Amine K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-a critical review. Energy Environ Sci. 2018; 11(2): 243-257. doi:10.1039/c7ee03122j
- 18Hua X, Robert R, Du LS, et al. Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J Phys Chem C. 2014; 118(28): 15169-15184. doi:10.1021/jp503902z
- 19Wu W, Wu W, Qiu X, Wang S. Low-temperature reversible capacity loss and aging mechanism in lithium-ion batteries for different discharge profiles. Int J Energy Res. 2019; 43(1): 243-253. doi:10.1002/er.4257
- 20Chun YS, Hua Y, Qiao D, Bo LY, Wei PY, Ling HY. A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries. Electrochim Acta. 2019; 326: 134928. doi:10.1016/j.electacta.2019.134928
- 21Zhao Y, Choe SY, Kee J. Modeling of degradation effects and its integration into electrochemical reduced order model for Li(MnNiCo)O2/graphite polymer battery for real time applications. Electrochim Acta. 2018; 270: 440-452. doi:10.1016/j.electacta.2018.02.086
- 22Kindermann FM, Keil J, Frank A, Jossen A. A SEI modeling approach distinguishing between capacity and power fade. J Electrochem Soc. 2017; 164(12): E287-E294. doi:10.1149/2.0321712jes
- 23Lee YK, Park J, Lu W. A comprehensive experimental and modeling study on dissolution in Li-ion batteries. J Electrochem Soc. 2019; 166(8): A1340-A1354. doi:10.1149/2.0111908jes
- 24Lin X, Park J, Liu L, Lee Y, Lu W, Sastry AM. A comprehensive capacity fade model and analysis for Li-ion batteries. J Electrochem Soc. 2013; 160(10): A1701-A1710. doi:10.1149/2.040310jes
- 25Lee YK. Effect of transition metal ions on solid electrolyte interphase layer on the graphite electrode in lithium ion battery. J Power Sources. 2021; 484:229270. doi:10.1016/j.jpowsour.2020.229270
- 26Samadani E, Mastali M, Farhad S, Fraser RA, Fowler M. Li-ion battery performance and degradation in electric vehicles under different usage scenarios. Int J Energy Res. 2016; 40(3): 379-392. doi:10.1002/er.3378
- 27Garg A, Shaosen S, Gao L, Peng X, Baredar P. Aging model development based on multidisciplinary parameters for lithium-ion batteries. Int J Energy Res. 2020; 44: 2801-2818. doi:10.1002/er.5096
- 28Wang L, Niu J, Zhao W, Li G, Zhao X. Study on electrochemical and thermal characteristics of lithium-ion battery using the electrochemical-thermal coupled model. Int J Energy Res. 2019; 43(6): 2086-2107. doi:10.1002/er.4410
- 29Ming J, Guo J, Xia C, Wang W, Alshareef HN. Zinc-ion batteries: materials, mechanisms, and applications. Mater Sci Eng R Rep. 2019; 135: 58-84. doi:10.1016/J.MSER.2018.10.002
- 30Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. 2019; 12(11): 3288-3304. doi:10.1039/C9EE02526J
- 31Yang D, Tan H, Rui X, Yu Y. Electrode materials for rechargeable zinc-ion and zinc-air batteries: current status and future perspectives. Electrochem Energy Rev. 2019; 2(3): 395-427. doi:10.1007/S41918-019-00035-5
- 32Biton M, Tariq F, Yufit V, Chen Z, Brandon N. Integrating multi-length scale high resolution 3D imaging and modelling in the characterisation and identification of mechanical failure sites in electrochemical dendrites. Acta Mater. 2017; 141: 39-46. doi:10.1016/J.ACTAMAT.2017.09.008
- 33Yang Q, Li Q, Liu Z, et al. Dendrites in Zn-Based Batteries. Adv Mater. 2020; 32(48):2001854. doi:10.1002/ADMA.202001854
- 34Wang N, Wan H, Duan J, et al. A review of zinc-based battery from alkaline to acid. Mater Today Adv. 2021; 11:100149. doi:10.1016/J.MTADV.2021.100149
- 35Xiang JY, Tu JP, Qiao YQ, et al. Electrochemical impedance analysis of a hierarchical cuo electrode composed of self-assembled nanoplates. J Phys Chem C. 2011; 115(5): 2505-2513. doi:10.1021/jp108261t
- 36Jafari M, Khan K, Gauchia L. Deterministic models of Li-ion battery aging: it is a matter of scale. J Energy Storage. 2018; 20: 67-77. doi:10.1016/j.est.2018.09.002
- 37Peled E, Menkin S. Review-SEI: past, present and future. J Electrochem Soc. 2017; 164(7): A1703-A1719. doi:10.1149/2.1441707jes
- 38Ali Y, Iqbal N, Lee S. Role of <scp>SEI</scp> layer growth in fracture probability in lithium-ion battery electrodes. Int J Energy Res. 2021; 45(4): 5293-5308. doi:10.1002/er.6150
- 39Kotak N, Barai P, Verma A, Mistry A, Mukherjee PP. Electrochemistry-mechanics coupling in intercalation electrodes. J Electrochem Soc. 2018; 165(5): A1064-A1083. doi:10.1149/2.0621805jes
- 40Zhao M, Kariuki S, Dewald HD, et al. Electrochemical stability of copper in lithium-ion battery electrolytes. J Electrochem Soc. 2000; 147(8): 2874. doi:10.1149/1.1393619
- 41Zheng Y, Zhang P, Wu SQ, Wen YH, Zhu ZZ, Yang Y. First-principles studies on the structural and electronic properties of Li-ion battery cathode material CuF 2. Solid State Commun. 2012; 152(17): 1703-1706. doi:10.1016/j.ssc.2012.06.018
- 42Dai Y, Cai L, White RE. Capacity Fade Model for Spinel LiMn 2 O 4 Electrode. J Electrochem Soc. 2013; 160(1): A182-A190. doi:10.1149/2.026302jes
- 43Kawamura T, Okada S, Yamaki JI. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J Power Sources. 2006; 156(2): 547-554. doi:10.1016/j.jpowsour.2005.05.084
- 44Birkl CR, Roberts MR, McTurk E, Bruce PG, Howey DA. Degradation diagnostics for lithium ion cells. J Power Sources. 2017; 341: 373-386. doi:10.1016/j.jpowsour.2016.12.011
- 45Ali Y, Iqbal N, Lee S. Inhomogeneous stress development at the multiparticle electrode of lithium-ion batteries. Int J Energy Res. 2021; 45: 14788-14803. doi:10.1002/er.6754
- 46Xiong K, Nie W, Yu P, Zhu L, Xiao X. Flower-like CuCo2O4@RGO nanohybrid as an effective counter electrode for dye-sensitized solar cells. Mater Lett. 2017; 204: 69-72. doi:10.1016/j.matlet.2017.06.009
- 47Abbasi L, Arvand M. Engineering hierarchical ultrathin CuCo 2 O 4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors. Appl Surf Sci. 2018; 445: 272-280. doi:10.1016/j.apsusc.2018.03.193
- 48Hsiao M, Lo C. Hierarchical nanostructured electrospun carbon fiber/NiCo2O4 composites as binder-free anodes for lithium-ion batteries. Int J Energy Res. 2020; 44: 8606-8621. doi:10.1002/er.5549
- 49Prabaharan DDM, Sadaiyandi K, Mahendran M, Sagadevan S. Precipitation method and characterization of cobalt oxide nanoparticles. Appl Phys A. 2017; 123(4): 1-6. doi:10.1007/S00339-017-0786-8
- 50Xia H, Zhu D, Luo Z, et al. Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance Supercapacitors. Sci Rep. 2013; 3(1): 1-8. doi:10.1038/srep02978
- 51Zhang G, Dang L, Li L, Wang R, Fu H, Shi K. Design and construction of Co3O4/PEI–CNTs composite exhibiting fast responding CO sensor at room temperature. CrstEngComm. 2013; 15(23): 4730-4738. doi:10.1039/C3CE40206A
- 52Wang Y, Hao J, Li W, et al. Mn3O4/co(OH)2 cactus-type nanoarrays for high-energy-density asymmetric supercapacitors. J Mater Sci. 2019; 55(2): 724-737. doi:10.1007/S10853-019-03998-4
- 53Feng Q, Zhao W, Wen S. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Appl Surf Sci. 2018; 436: 823-831. doi:10.1016/J.APSUSC.2017.12.113
- 54Takenaka N, Suzuki Y, Sakai H, Nagaoka M. On electrolyte-dependent formation of solid electrolyte interphase film in lithium-ion batteries: strong sensitivity to small structural difference of electrolyte molecules. J Phys Chem C. 2014; 118(20): 10874-10882. doi:10.1021/jp5018696
- 55Hamidah NL, Wang FM, Nugroho G. The understanding of solid electrolyte interface (SEI) formation and mechanism as the effect of flouro-o-phenylenedimaleimaide (F-MI) additive on lithium-ion battery. Surf Interface Anal. 2019; 51(3): 345-352. doi:10.1002/sia.6586
- 56Malik M, Dincer I, Rosen MA. Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. Int J Energy Res. 2016; 40(8): 1011-1031. doi:10.1002/er.3496
- 57Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc. 1997; 144(8):L208. doi:10.1149/1.1837858
- 58Andersson AM, Henningson A, Siegbahn H, Jansson U, Edström K. Electrochemically lithiated graphite characterised by photoelectron spectroscopy. J Power Sources. 2003; 119–121: 522-527. doi:10.1016/S0378-7753(03)00277-5
- 59Malmgren S, Ciosek K, Hahlin M, et al. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy. Electrochim Acta. 2013; 97: 23-32. doi:10.1016/j.electacta.2013.03.010
- 60Kuo LY, Moradabadi A, Huang HF, Hwang BJ, Kaghazchi P. Structure and ionic conductivity of the solid electrolyte interphase layer on tin anodes in Na-ion batteries. J Power Sources. 2017; 341: 107-113. doi:10.1016/j.jpowsour.2016.11.077
- 61Shen Z, Zhang W, Li S, et al. Tuning the interfacial electronic conductivity by artificial electron tunneling barriers for practical lithium metal batteries. Nano Lett. 2020; 20: 6606-6613. doi:10.1021/acs.nanolett.0c02371
- 62Ashwin TR, Barai A, Uddin K, Somerville L, McGordon A, Marco J. Prediction of battery storage ageing and solid electrolyte interphase property estimation using an electrochemical model. J Power Sources. 2018; 385: 141-147. doi:10.1016/j.jpowsour.2018.03.010
- 63Joshi T, Eom K, Yushin G, Fuller TF. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries. J Electrochem Soc. 2014; 161(12): A1915-A1921. doi:10.1149/2.0861412jes