H2 storage using Zr-CMK-3 developed by a new synthesis method
Corresponding Author
Juliana M. Juárez
Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba, Argentina
Correspondence
Juliana M. Juárez, Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba 5016, Argentina.
Email: [email protected]
Search for more papers by this authorLisandro F. Venosta
Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba, Argentina
Search for more papers by this authorOscar A. Anunziata
Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba, Argentina
Search for more papers by this authorMarcos B. Gómez Costa
Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba, Argentina
Search for more papers by this authorCorresponding Author
Juliana M. Juárez
Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba, Argentina
Correspondence
Juliana M. Juárez, Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba 5016, Argentina.
Email: [email protected]
Search for more papers by this authorLisandro F. Venosta
Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba, Argentina
Search for more papers by this authorOscar A. Anunziata
Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba, Argentina
Search for more papers by this authorMarcos B. Gómez Costa
Facultad Regional Córdoba, Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, Córdoba, Argentina
Search for more papers by this authorFunding information: Consejo Nacional de Investigaciones Científicas y Técnicas; Fondo para la Investigación Científica y Tecnológica
Summary
One of the biggest problems in using hydrogen as an alternative fuel is that its storage must be safe and portable. This work addresses a new direct synthesis technique used to obtain a novel mesoporous carbon (CMK-3) modified with zirconium oxide. This novel material shows promise for hydrogen adsorption and storage application for energy harvesting. Zirconium oxide (Zr-CMK-3) material is achieved through successful synthesis and characterized by XRD, SEM, Raman, BET, UV-Vis-DRS, XPS and TEM analyses. Zr-CMK-3 significantly improved H2 storage performance (reaching at 77 K and 10 bar 4.6 wt%) compared to the pristine CMK-3. The novel material is favorable for H2 uptake by using weak bonding (physisorption). A hydrogen uptake mechanistic approach is proposed and the role of the Zr+4 cation in hydrogen adsorption is discussed.
REFERENCES
- 1Cho SJ, Choo K, Kim DP, Kim JW. H2 sorption in HCl-treated polyaniline and polypyrrole. Catal Today. 2007; 120: 336-340. https://doi.org/10.1016/j.cattod.2006.09.007
- 2White CM, Steeper RR, Lutz AE. The hydrogen-fueled internal combustion engine: a technical review. Int J Hydrogen Energy. 2006; 31: 1292-1305. https://doi.org/10.1016/j.ijhydene.2005.12.001
- 3Jurczyk MU, Kumar A, Srinivasan S, Stefanakos E. Polyaniline-based nanocomposite materials for hydrogen storage. Int J Hydrogen Energy. 2007; 32: 1010-1015. https://doi.org/10.1016/j.ijhydene.2006.07.012
- 4Moradi R, Groth KM. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis. Int J Hydrogen Energy. 2019; 44(23): 12254-12269. https://doi.org/10.1016/j.ijhydene.2019.03.041
- 5Klebanoff LE, Keller JO. 5 years of hydrogen storage research in the U.S. DOE metal hydride Center of Excellence (MHCoE). Int J Hydrogen Energy. 2013; 38: 4533-4576. https://doi.org/10.1016/j.ijhydene.2013.01.051
- 6Aceves SM, Berry GD, Martinez-Frias J, Espinosa-Loza F. Vehicular storage of hydrogen in insulated pressure vessels. Int J Hydrogen Energy. 2006; 31: 2274-2283. https://doi.org/10.1016/j.ijhydene.2006.02.019
- 7Yu X, Tang Z, Sun D, Ouyang L, Zhu M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog Mater Sci. 2017; 88: 1-48. https://doi.org/10.1016/j.pmatsci.2017.03.001
- 8Kusdhany MIM, Lyth SM. New insights into hydrogen uptake on porous carbon materials via explainable machine learning. Carbon. 2021; 179: 190-201. https://doi.org/10.1016/j.carbon.2021.04.036
- 9Tian M, Shang C. Nano-structured MgH2 catalyzed by TiC nanoparticles for hydrogen storage. J Chem Technol Biotechnol. 2011; 86: 69-74. https://doi.org/10.1002/jctb.2479
- 10Arroyo ME, de Dompablo D, Ceder G. A first principles study of hydrogen storage in NaAlH4-related complex hydrides. J Inorg Gen Chem. 2005; 63: 1982-1984. https://doi.org/10.1002/zaac.200570002
- 11Wang T, Aguey-Zinsou KF. Controlling the growth of LiBH4 nanoparticles for hydrogen storage. Energy Technol. 2019; 7:1801159. https://doi.org/10.1002/ente.201801159
- 12Christian ML, Aguey-Zinsou KF. Core-Shell strategy leading to high reversible hydrogen storage capacity for NaBH4. ACS Nano. 2012; 6: 7739-7751. https://doi.org/10.1021/nn3030018
- 13Wang L, Aguey-Zinsou KF. Synthesis of LiAlH4 nanoparticles leading to a single hydrogen release step upon Ti coating. Inorganics. 2017; 5: 38-49. https://doi.org/10.3390/inorganics5020038
- 14Yang JH. Improving the hydrogen reaction kinetics of complex hydrides. Adv Mater. 2009; 21: 3023-3028. https://doi.org/10.1002/adma.200803323
- 15Arnaud CM, Griffond M, Sofianosa V, et al. High-temperature thermochemical energy storage using metal hydrides: destabilisation of calcium hydride with silicon. J Alloys Compd. 2021; 858:158229. https://doi.org/10.1016/j.jallcom.2020.158229
- 16Choudhari MJ, Sharma VK, Paswan M. Metal hydrides for thermochemical energy storage applications. Int J Energy Res. 2021; 45: 14465-14492. https://doi.org/10.1002/er.6818
- 17Sazelee N, Mustafa NS, Yahya MS, Ismail M. Enhanced dehydrogenation performance of NaAlH4 by the addition of spherical SrTiO3. Int J Energy Res. 2021; 45: 8648-8658. https://doi.org/10.1002/er.6401
- 18Noto N, Isobe S, Hashimoto N. Dehydrogenation properties of hydride-hydroxide systems containing potassium. Int J Energy Res. 2021; 45: 18237-18244. https://doi.org/10.1002/er.7038
- 19Zhang W, Zhang X, Huang Z, et al. Recent development of lithium borohydride-based materials for hydrogen storage. Adv Energy Sustain Res. 2021;2100073. https://doi.org/10.1002/aesr.202100073
10.1002/aesr.202100073 Google Scholar
- 20Liu H, Zhang L, Ma H, et al. Aluminum hydride for solid-state hydrogen storage: structure, synthesis, thermodynamics, kinetics, and regeneration. J Energy Chem. 2021; 5: 428-440. https://doi.org/10.1016/j.jechem.2020.02.008
- 21Tarasov BP, Fursikov PV, Volodin AA, et al. Metal hydride hydrogen storage and compression systems for energy storage technologies. Int J Hydrogen Energy. 2021; 46: 13647-13657. https://doi.org/10.1016/j.ijhydene.2020.07.085
- 22Goshome K, Endo N, Maeda T. Demonstration of a single-stage metal hydride hydrogen compressor composed of BCC V40TiCr alloy. Int J Hydrogen Energy. 2021; 46: 28180-28190. https://doi.org/10.1016/j.ijhydene.2021.06.069
- 23Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem. 2005; 15: 1217-1231. https://doi.org/10.1039/B414402C
- 24Ma TY, Liu L, Yuan ZY. Direct synthesis of ordered mesoporous carbons. Chem Soc Rev. 2013; 42(9): 3977-4003. https://doi.org/10.1039/C2CS35301F
- 25Li ZJ, Del Cul GD, Yan WF, Liang CD, Dai S. Fluorinated carbon with ordered mesoporous structure. J Am Chem Soc. 2004; 126: 12782-12783. https://doi.org/10.1021/ja046589
- 26Ariga K, Vinu A, Ji QM, et al. A layered mesoporous carbon sensor based on Nanopore-filling cooperative adsorption in the liquid phase. Angew Chem, Int Ed. 2008; 47: 7254-7257. https://doi.org/10.1002/anie.200802820
- 27Ledesma BC, Juárez JM, Valles VA, Anunziata OA, Beltramone AR. Novel preparation of Titania-modified CMK-3 nanostructured material as support for Ir catalyst applied in Hydrodenitrogenation of indole. Catal Lett. 2017; 147: 1029-1039. https://doi.org/10.1007/s10562-017-2005-9
- 28Walker GM, Weatherly LR. Fixed bed adsorption of acid dyes onto activated carbon. Environ Pollut. 1998; 99: 133-136. https://doi.org/10.1016/S0269-7491(97)00166-8
- 29Juárez JM, Gómez Costa MB, Anunziata OA. Synthesis and characterization of Pt-CMK-3 hybrid nanocomposite for hydrogen storage. Int J Energy Res. 2015; 39: 128-139. https://doi.org/10.1002/er.3229
- 30Juárez JM, Gómez Costa MB, Anunziata OA. Preparation and characterization of activated CMK-1 with Zn and Ni species applied in hydrogen storage. Int J Energy Res. 2015; 39: 941-953. https://doi.org/10.1002/er.3298
- 31Gómez Costa MB, Juárez JM, Pecchi G, Anunziata OA. Anatase-CMK-3 nanocomposite development for hydrogen uptake and storage. Bull Mater Sci. 2017; 40: 271-280. https://doi.org/10.1007/s12034-017-1382-4
- 32Ryoo R, Joo SH, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B. 1999; 103: 7743-7746. https://doi.org/10.1021/jp991673a
- 33Jun S, Joo SH, Ryoo R, et al. Synthesis of new, Nanoporous carbon with hexagonally ordered Mesostructure. J Am Chem Soc. 2000; 122: 10712-10713. https://doi.org/10.1021/ja002261e
- 34Joo SH, Jun S, Ryoo R. Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Microporous Mesoporous Mater. 2001; 44-45: 153-158. https://doi.org/10.1016/S1387-1811(01)00179-2
- 35Liu R, Shi Y, Wan Y, et al. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J Am Chem Soc. 2006; 128(35): 11652-11662. https://doi.org/10.1021/ja0633518
- 36Prabhu A, Al Shoaibi A, Srinivasakannan C. Synthesis and characterization of mesoporous carbon by simple one pot method. Mater Lett. 2014; 136: 81-84. https://doi.org/10.1016/j.matlet.2014.08.012
- 37Gutierrez O, Fuentes G, Salcedo C, Klimova T. SBA-15 supports modified by Ti and Zr grafting for NiMo hydrodesulfurization catalysts. Catal Today. 2006; 116(4): 485-497. https://doi.org/10.1016/j.cattod.2006.06.035
- 38Juárez JM, Ledesma BC, Gómez Costa MB, Beltramone AR, Anunziata OA. Novel preparation of CMK-3 nanostructured material modified with titania applied in hydrogen uptake and storage. Microporous Mesoporous Mater. 2017; 254: 146-152. https://doi.org/10.1016/j.micromeso.2017.03.056
- 39Juárez JM, Gómez Costa MB, Anunziata OA. Direct synthesis of ordered mesoporous carbon applied in hydrogen storage. J Porous Mater. 2018; 25: 1359-1363. https://doi.org/10.1007/s10934-017-0546-3
- 40Armelao L, Eisenmenger-Sittner C, Groenewolt M, et al. Zirconium and hafnium oxoclusters as molecular building blocks for highly dispersed ZrO2 or HfO2 nanoparticles in silica thin films. J Mater Chem. 2005; 15(18): 1838-1848. https://doi.org/10.1039/B500521C
- 41Velazquez-Jimenez LH, Hurt RH, Matos J, Rangel-Mendez JR. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr (IV) assembly and adsorption mechanism. Environ Sci Technol. 2014; 48(2): 1166-1174. https://doi.org/10.1021/es403929b
- 42Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000; 61: 14095-14107. https://doi.org/10.1103/PhysRevB.61.14095
- 43Tuinstra F, Koenig JL. Raman spectra of graphite. J Chem Phys. 1970; 53: 1126-1130. https://doi.org/10.1063/1.1674108
- 44Dresselhaus MS, Pimenta MA, Eklund PC, Dresselhaus G. Raman scattering in fullerenes and related carbon-based materials. Raman Scattering in Materials Science. Vol 42. Cham: Springer, Berlin, Heidelberg; 2000: 314-364. https://doi.org/10.1007/978-3-662-04221-2_10
10.1007/978-3-662-04221-2_10 Google Scholar
- 45Felderhoff M, Weidenthaler C, von Helmolt R, Eberle U. Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys. 2007; 9: 2643-2653. https://doi.org/10.1039/b701563c
- 46Kadono K, Kajiura H, Shiraishi M. Dense hydrogen adsorption on carbon subnanopores at 77 K. Appl Phys Lett. 2003; 83: 3392-3394. https://doi.org/10.1063/1.1621073
- 47Chen SY, Lee JF, Cheng S. Pinacol-type rearrangement catalyzed by Zr-incorporated SBA-15. J Catal. 2010; 270: 196-205. https://doi.org/10.1016/j.jcat.2009.12.020
- 48Chen WK, Tseng HH, Wei MC, Su EC, Chiu IC. Transesterification of canola oil as biodiesel over Na/Zr-SBA-15 catalysts: effect of zirconium content. Int J Hydrogen Energy. 2014; 39: 19555-19562. https://doi.org/10.1016/j.ijhydene.2014.08.154
- 49Tang Y, Zong E, Wan H, Xu Z, Zheng S, Zhu D. Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal. Microporous Mesoporous Mater. 2012; 155: 192-200. https://doi.org/10.1016/j.micromeso.2012.01.020
- 50Iglesias J, Melero JA, Bautista LF, et al. Zr-SBA-15 as an efficient acid catalyst for FAME production from crude palm oil. Catal Today. 2011; 167: 46-55. https://doi.org/10.1016/j.cattod.2010.11.060
- 51Du Y, Liu S, Zhang Y, Nawaz F, Ji Y, Xiao FS. Urea-assisted synthesis of hydrothermally stable Zr-SBA-15 and catalytic properties over their sulfated samples. Microporous Mesoporous Mater. 2009; 121: 185-193. https://doi.org/10.1016/j.micromeso.2009.01.030
- 52Ramanthan A, Castro-Villalobos MC, Kwakernaak C, Telalovic S, Hanefeld U. Zr-TUD-1: a Lewis acidic, three-dimensional, mesoporous, zirconium-containing catalyst. Chem A Euro J. 2008; 14: 961-972. https://doi.org/10.1002/chem.200700725
- 53Juan JC, Jiang Y, Meng X, Cao W, Yarmo MA, Zhang J. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst. Mater Res Bull. 2007; 42: 1278-1285. https://doi.org/10.1016/j.materresbull.2006.10.017
- 54Jin H, Lee YS, Hong I. Hydrogen adsorption characteristics of activated carbon. Catal Today. 2007; 120: 399-406. https://doi.org/10.1016/j.cattod.2006.09.012
- 55Zacharia R, Kim KY, Hwang SW, Nahm KS. Intrinsic linear scaling of hydrogen storage capacity of carbon nanotubes with the specific surface area. Catal Today. 2007; 120: 426-431. https://doi.org/10.1016/j.cattod.2006.09.026
- 56Parra JB, Ania CO, Arenillas A, Rubiera F, Palacios JM, Pis JJ. Textural development and hydrogen adsorption of carbon materials from PET waste. J Alloys Compd. 2004; 379: 280-289. https://doi.org/10.1016/j.jallcom.2004.02.044
- 57Jorda-Beneyto M, Suarez-Garcia F, Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon. 2007; 45: 293-303. https://doi.org/10.1016/j.carbon.2006.09.022
- 58Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE. Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc. 2005; 127: 16006-16007. https://doi.org/10.1021/ja0550529
- 59Mehrabi M, Parvin P, Reyhani A, Mortazavi SZ. Hybrid laser ablation and chemical reduction to synthesize Ni/Pd nanoparticles decorated multi-wall carbon nanotubes for effective enhancement of hydrogen storage. Int J Hydrogen Energy. 2018; 43: 12211-12221. https://doi.org/10.1016/j.ijhydene.2018.04.144
- 60Syzgantseva O, Calatayud M, Minot C. Hydrogen adsorption on monoclinic (1j11) and (1j01) ZrO2 surfaces: a periodic ab initio study. J Phys Chem C. 2010; 114: 11918-11923. https://doi.org/10.1021/jp103463s
- 61Onishi T, Abe H, Maruya K, Domen K. I.R. Spectra of hydrogen adsorbed on ZrO2. J Chem Soc Chem Commun. 1985;(9): 617-618. https://doi.org/10.1039/C39850000617.
10.1039/C39850000617 Google Scholar
- 62Hirscher M, Panella B. Nanostructures with high surface area for hydrogen storage. J Alloys Compd. 2005; 404-406: 399-401. https://doi.org/10.1016/j.jallcom.2004.11.109