A comparative study of modified Linde and cryogenic cooling for CO2 separation
Nandakishora Y
Department of Mechanical Engineering, National Institute of Technology, Rourkela, India
Search for more papers by this authorRanjit K. Sahoo
Department of Mechanical Engineering, National Institute of Technology, Rourkela, India
Search for more papers by this authorCorresponding Author
Murugan S
Department of Mechanical Engineering, National Institute of Technology, Rourkela, India
Correspondence
Murugan S, Department of Mechanical Engineering, National Institute of Technology, Rourkela, India.
Email: [email protected]
Search for more papers by this authorNandakishora Y
Department of Mechanical Engineering, National Institute of Technology, Rourkela, India
Search for more papers by this authorRanjit K. Sahoo
Department of Mechanical Engineering, National Institute of Technology, Rourkela, India
Search for more papers by this authorCorresponding Author
Murugan S
Department of Mechanical Engineering, National Institute of Technology, Rourkela, India
Correspondence
Murugan S, Department of Mechanical Engineering, National Institute of Technology, Rourkela, India.
Email: [email protected]
Search for more papers by this authorSummary
The separation of carbon dioxide (CO2) from the flue gas is a challenging one in terms of the energy penalty. The development of a cryogenic or low-temperature CO2 separation method helps to overcome the energy penalty associated with CO2 separation. In this study, a preliminary investigation is carried out in a theoretically modified Linde process which can be used for CO2 separation from a gas mixture containing CO2 and N2. A cryogenic cooling process is also studied for CO2 separation of the same quality of the gas mixture. The compression work and cooling loads in each case are analyzed using Aspen Plus software. The effect of CO2 volume in the mixture, compressor efficiency, and compressor discharge pressure on the energy consumption is studied for both the theoretically modified Linde and the cryogenic cooling processes, and the results are compared between them. The results indicated in the CO2 separation by the cooling process are better than the modified Linde process. The energy penalty shows for 20% CO2 composition of separation by the cooling process with the single-stage compression is lower by around 123.9% and 128.8% in terms of compression work and compressor cooling load, respectively, than those of the modified Linde process working in a single-stage compression. The separation by the cooling process refrigeration effect is 15.9% more than in the modified Linde process.
REFERENCES
- 1Raghuvanshi SP, Chandra A, Raghav AK. Carbon dioxide emissions from coal based power generation in India. Energy Convers Manag. 2006; 47: 427-441. https://doi.org/10.1016/j.enconman.2005.05.007
- 2Rao AB, Kumar P. Cost implications of carbon capture and storage for the coal power plants in India. Energy Procedia. 2014; 54: 431-438. https://doi.org/10.1016/j.egypro.2014.07.285
10.1016/j.egypro.2014.07.285 Google Scholar
- 3Knapik E, Kosowski P, Stopa J. Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy. Chem Eng Res Des. 2018; 131: 66-79. https://doi.org/10.1016/j.cherd.2017.12.027
- 4Yoro KO, Sekoai PT. The potential of CO2 capture and storage technology in South Africa's coal-fired thermal power plants. Environments. 2016; 3:24. https://doi.org/10.3390/environments3030024
- 5Nandakishora Y, Sahoo RK, Murugan S. Review on waste heat recovery from flue gas and its application in CO2 capture. IOP Conf Ser Mater Sci Eng. 2021; 1130:012009. https://doi.org/10.1088/1757-899x/1130/1/012009
- 6Xu J, Lin W. A CO2 cryogenic capture system for flue gas of an LNG-fired power plant. Int J Hydrog Energy. 2017; 42:18674–18680. https://doi.org/10.1016/j.ijhydene.2017.04.135
- 7Clodic D, De Paris M, El Hitti R, Younes M, Bill A, Environment AP, CO2 capture by anti-sublimation thermo-economic process evaluation. Paper presented at: 4Th Annu. Conf Carbon Capture Sequestration (2005) 1–11.
- 8Berstad D, Anantharaman R, Nekså P. Low-temperature CO2 capture technologies - applications and potential. Int J Refrig. 2013; 36: 1403-1416. https://doi.org/10.1016/j.ijrefrig.2013.03.017
- 9Song C, Liu Q, Deng S, Li H, Kitamura Y. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew Sust Energ Rev. 2019; 101: 265-278. https://doi.org/10.1016/j.rser.2018.11.018
- 10Tuinier MJ, van Sint Annaland M, Kramer GJ, Kuipers JAM. Cryogenic CO2 capture using dynamically operated packed beds. Chem Eng Sci. 2010; 65: 114-119. https://doi.org/10.1016/j.ces.2009.01.055
- 11Tuinier MJ, Van Sint Annaland M, Kuipers JAM. A novel process for cryogenic CO2 capture using dynamically operated packed beds-an experimental and numerical study. Int J Greenh Gas Control. 2011; 5: 694-701. https://doi.org/10.1016/j.ijggc.2010.11.011
- 12Lively RP, Koros WJ, Johnson JR. Enhanced cryogenic CO2 capture using dynamically operated low-cost fiber beds. Chem Eng Sci. 2012; 71: 97-103. https://doi.org/10.1016/j.ces.2011.11.042
- 13Yang W, Li S, Li X, Liang Y, Zhang X. Analysis of a new liquefaction combined with desublimation system for CO2 separation based on N2/CO2 phase equilibrium. Energies. 2015; 8: 9495-9508. https://doi.org/10.3390/en8099495
- 14Xu G, Liang F, Yang Y, Hu Y, Zhang K, Liu W. An improved CO2 separation and purification system based on cryogenic separation and distillation theory. Energies. 2014; 7: 3484-3502. https://doi.org/10.3390/en7053484
- 15Clodic D, Younes M. A new method for CO2 CaptureFrosting CO2 at atmospheric pressure. Paper presented at: Greenh. Gas Control Technol. - 6th Int. Conf, Elsevier, 2003, pp. 155–160. https://doi.org/10.1016/b978-008044276-1/50025-8
10.1016/b978-008044276-1/50025-8 Google Scholar
- 16Tuinier MJ, Hamers HP, Van Sint Annaland M. Techno-economic evaluation of cryogenic CO2 capture-a comparison with absorption and membrane technology. Int J Greenh Gas Control. 2011; 5: 1559-1565. https://doi.org/10.1016/j.ijggc.2011.08.013
- 17Lee C, Yoo J, Lee J, Park H, Jeong S. Experimental investigation of CO2 condensation process using cryogen. AIP Conf Proc. 2014; 1573: 1115-1121. https://doi.org/10.1063/1.4860830
- 18Yuan LC, Pfotenhauer JM, Qiu LM. A preliminary investigation of cryogenic CO2 capture utilizing a reverse Brayton cycle. AIP Conf Proc. 2014; 1573: 1107-1114. https://doi.org/10.1063/1.4860829
- 19Adhi TP, Putra EP, Haristyawan RB. CO2 freezing area concept for improved cryogenic distillation of natural gas. IOP Conf Ser Mater Sci Eng. 2019; 543: 1-13. https://doi.org/10.1088/1757-899X/543/1/012077.
10.1088/1757-899X/543/1/012077 Google Scholar
- 20O'Brien JW. Distillative Separation of Methane and Carbon Doxde, United States Pat; 1984.
- 21Sun R, Tian H, Song C, et al. Performance analysis and comparison of cryogenic CO2 capture system. Int J Green Energy. 2021; 18: 822-833. https://doi.org/10.1080/15435075.2021.1880916
- 22Akrami E, Ameri M, Rocco MV. Conceptual design, exergoeconomic analysis and multi-objective optimization for a novel integration of biomass-fueled power plant with MCFC-cryogenic CO2 separation unit for low-carbon power production. Energy. 2021; 227:120511. https://doi.org/10.1016/j.energy.2021.120511
- 23Akrami E, Ameri M, Rocco MV. Integration of biomass-fueled power plant and MCFC-cryogenic CO2 separation unit for low-carbon power production: thermodynamic and exergoeconomic comparative analysis. Energy Convers Manag. 2020; 223:113304. https://doi.org/10.1016/j.enconman.2020.113304
- 24Akrami E, Ameri M, Rocco MV. Developing an innovative biomass-based power plant for low-carbon power production: exergy and exergoeconomic analyses. Therm Sci Eng Prog. 2020; 19:100662. https://doi.org/10.1016/j.tsep.2020.100662
10.1016/j.tsep.2020.100662 Google Scholar
- 25Hoeger C, Burt S, Baxter L. Cryogenic carbon capture™ technoeconomic analysis. SSRN Electron J. 2021; 1-11. https://doi.org/10.2139/ssrn.3820158.
10.2139/ssrn.3820158 Google Scholar
- 26Frankman D, Burt S, Beven E, et al. Recent cryogenic carbon capture™ field test results. SSRN Electron J. 2021; 1-7. https://doi.org/10.2139/ssrn.3820161
10.2139/ssrn.3820161 Google Scholar
- 27Maqsood K, Ali A, Nasir R, et al. Experimental and simulation study on high-pressure V-L-S cryogenic hybrid network for CO2 capture from highly sour natural gas. Process Saf Environ Prot. 2021; 150: 36-50. https://doi.org/10.1016/j.psep.2021.03.051
- 28Surmi A. Process integration and optimization of CO2 removal from natural gas using cryogenic distillation system. Paper presented at: SPE Middle East Oil Gas Show Conf. MEOS, Proc., Society of Petroleum Engineers (SPE), 2019. https://doi.org/10.2118/194937-ms
10.2118/194937-ms Google Scholar
- 29Berstad D, Nekså P, Anantharaman R. Low-temperature CO2 removal from natural gas. Energy Procedia. 2012; 26: 41-48. https://doi.org/10.1016/j.egypro.2012.06.008
- 30Berstad D, Nekså P, Gjøvåg GA. Low-temperature syngas separation and CO2 capture for enhanced efficiency of IGCC power plants. Energy Procedia. 2011; 4: 1260-1267. https://doi.org/10.1016/j.egypro.2011.01.182
- 31Othman NA, Zabiri H, Tufa LD. Dynamic simulation and control of feed conditioning system for CO2 capture. IOP Conf Ser Mater Sci Eng. 2018; 458:012050. https://doi.org/10.1088/1757-899X/458/1/012050
10.1088/1757-899X/458/1/012050 Google Scholar
- 32Yousef AMI, Eldrainy YA, El-Maghlany WM, Attia A. Upgrading biogas by a low-temperature CO2 removal techni que. Alex Eng J. 2016; 55: 1143-1150. https://doi.org/10.1016/j.aej.2016.03.026
- 33Amann JM, Kanniche M, Bouallou C. Natural gas combined cycle power plant modified into an O2/CO2 cycle for CO2 capture. Energy Convers Manag. 2009; 50: 510-521. https://doi.org/10.1016/j.enconman.2008.11.012
- 34Li S, Ding J, Zhang X, Cheng D, Hu X, Li X. A feasible energy-saving analysis of a new system for CO2 cryogenic capture. Int J Low-Carbon Technol. 2016; 11: 235-239. https://doi.org/10.1093/ijlct/ctt065
- 35Baxter L, Baxter A, Burt S. Cryogenic CO2 capture as a cost-effective CO2 capture process. Paper presented at: 26th Annu. Int. Pittsburgh Coal Conf. 2009, PCC 2009. 1, 2009. 762–775.
- 36Fandiño O, Trusler JPM, Vega-Maza D. Phase behavior of (CO2+H2) and (CO2+N2) at temperatures between (218.15 and 303.15)K at pressures up to 15MPa. Int J Greenh Gas Control. 2015; 36: 78-92. https://doi.org/10.1016/j.ijggc.2015.02.018
- 37Ke J, Suleiman N, Sanchez-Vicente Y, et al. The phase equilibrium and density studies of the ternary mixtures of CO2 + Ar + N2 and CO2 + Ar + H2, systems relevance to CCS technology. Int J Greenh Gas Control. 2017; 56: 55-66. https://doi.org/10.1016/j.ijggc.2016.11.003
- 38Koohestanian E, Shahraki F. Review on principles, recent progress, and future challenges for oxy-fuel combustion CO2 capture using compression and purification unit. J Environ Chem Eng. 2021; 9:105777. https://doi.org/10.1016/j.jece.2021.105777
- 39Liu B, Zhang M, Yang X, Wang T. Simulation and energy analysis of CO2 capture from CO2-EOR extraction gas using cryogenic fractionation. J Taiwan Inst Chem Eng. 2019; 103: 67-74. https://doi.org/10.1016/j.jtice.2019.07.008
- 40Cao WS, Lu XS, Lin WS, Gu AZ. Parameter comparison of two small-scale natural gas liquefaction processes in skid-mounted packages. Appl Therm Eng. 2006; 26: 898-904. https://doi.org/10.1016/j.applthermaleng.2005.09.014
- 41Chen GJ, Sun CY, Guo TM. A theoretical revision of the derivation of liquid property expressions from an equation of state and its application. Chem Eng Sci. 2000; 55: 4913-4923. https://doi.org/10.1016/S0009-2509(00)00123-8
- 42Weber W, Zeck S, Knapp H. Gas solubilities in liquid solvents at high pressures: apparatus and results for binary and ternary systems of N2, CO2 and CH3OH. Fluid Phase Equilib. 1984; 18: 253-278. https://doi.org/10.1016/0378-3812(84)85011-6
- 43Al-Sahhaf TA, Kidnay AJ, Sloan ED. Liquid + vapor equilibriums in the nitrogen + carbon dioxide + methane system. Ind Eng Chem Fundam. 1983; 22: 372-380. https://doi.org/10.1021/i100012a004
- 44Brown TS, Niesen VG, Sloan ED, Kidnay AJ. Vapor-liquid equilibria for the binary systems of nitrogen, carbon dioxide, and n-butane at temperatures from 220 to 344 K. Fluid Phase Equilib. 1989; 53: 7-14. https://doi.org/10.1016/0378-3812(89)80067-6
- 45Bian B, Wang Y, Shi J, Zhao E, Lu BCY. Simultaneous determination of vapor-liquid equilibrium and molar volumes for coexisting phases up to the critical temperature with a static method. Fluid Phase Equilib. 1993; 90: 177-187. https://doi.org/10.1016/0378-3812(93)85012-B
- 46Yucelen B, Kidnay AJ. Vapor-liquid equilibria in the nitrogen+carbon dioxide+propane system from 240 to 330 K at pressures to 15 MPa. J Chem Eng Data. 1999; 44: 926-931. https://doi.org/10.1021/je980321e
- 47Lasala S, Chiesa P, Privat R, Jaubert JN. VLE properties of CO2 – based binary systems containing N2, O2 and Ar: experimental measurements and modelling results with advanced cubic equations of state. Fluid Phase Equilib. 2016; 428: 18-31. https://doi.org/10.1016/j.fluid.2016.05.015
- 48Westman SF, Stang HGJ, Løvseth SW, et al. Vapor-liquid equilibrium data for the carbon dioxide and nitrogen (CO2 + N2) system at the temperatures 223, 270, 298 and 303 K and pressures up to 18 MPa. Fluid Phase Equilib. 2016; 409: 207-241. https://doi.org/10.1016/j.fluid.2015.09.034
- 49Dorau HKW, Al-Wakeel IM. VLE data for CO2-CF2Cl2, N2-CO2, N2-CF2Cl2 and N2-CO2-CF2Cl. Cryogenics. 1983; 23: 29-35. https://doi.org/10.1016/0011-2275(83)90137-6
- 50Reid RC, Prausnitz JM, Poling BE. The Properties of Gases and Liquids. 4th ed. New York: McGraw-Hill, Inc; https://doi.org/1987.
- 51Poling BE, Prausnitz JM, O'Connell JP. The Properties of Gases and Liquids. 5th ed. New York: McGraw Hill; 2001. https://doi.org/10.1036/0070116822
- 52Vidal J. Thermodynamics Applications in Chemical Engineering and Petroleum Industry, Editions Technip, Paris; 2003.
- 53Ahmed T. Equation of State and PVT Analysis. 2nd ed. Houston, TX: Gulf Publishing Company; 2007.
- 54Kanoǧlu M. Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction. Int J Energy Res. 2002; 26: 763-774. https://doi.org/10.1002/er.814
- 55López-Paniagua I, Rodríguez-Martín J, Sánchez-Orgaz S, Roncal-Casano JJ. Step by step derivation of the optimum multistage compression ratio and an application case. Entropy. 2020; 22: 678. https://doi.org/10.3390/e22060678
- 56Xu G, Li L, Yang Y, Tian L, Liu T, Zhang K. A novel CO2 cryogenic liquefaction and separation system. Energy. 2012; 42: 522-529. https://doi.org/10.1016/j.energy.2012.02.048
- 57Midthun KT, Nørstebø VS, Tomasgard A, Werner AS. Natural gas networks. Encyclopedia of Energy, Natural Resource, and Environmental Economics. London, England: Elsevier Inc.; 2013: 161-167. https://doi.org/10.1016/B978-0-12-375067-9.00120-0
10.1016/B978-0-12-375067-9.00120-0 Google Scholar
- 58Witkowski A, Majkut M. The impact of CO2 compression systems on the compressor power required for a pulverized coal-fired power plant in post-combustion carbon dioxide sequestration. Arch Mech Eng. 2012; 59: 343-360. https://doi.org/10.2478/v10180-012-0018-x
10.2478/v10180-012-0018-x Google Scholar
- 59Jackson S, Brodal E. A comparison of the energy consumption for CO2 compression process alternatives. IOP Conf Ser Earth Environ Sci. 2018; 167:012031. https://doi.org/10.1088/1755-1315/167/1/012031
10.1088/1755-1315/167/1/012031 Google Scholar
- 60Le Moullec Y. Assessment of carbon capture thermodynamic limitation on coal-fired power plant efficiency. Int J Greenh Gas Control. 2012; 7: 192-201. https://doi.org/10.1016/j.ijggc.2011.10.002
- 61Yousef AM, El-Maghlany WM, Eldrainy YA, Attia A. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture. Energy. 2018; 156: 328-351. https://doi.org/10.1016/j.energy.2018.05.106
- 62Wang J, Wang Z, Sun B. Improved equation of CO2 joule-Thomson coefficient. J CO2 Util. 2017; 19: 296-307. https://doi.org/10.1016/j.jcou.2017.04.007
- 63Albusaidi W, Pilidis P. An iterative method to derive the equivalent centrifugal compressor performance at various operating conditions: part II: modeling of gas properties impact. Energies. 2015; 8: 8516-8536. https://doi.org/10.3390/en8088516
- 64Ren T, Xu W, Cai M, Wang X, Li M. Experiments on air compression with an isothermal piston for energy storage. Energies. 2019; 12:3730. https://doi.org/10.3390/en12193730