Comparison of the advanced machine learning methods for better prediction accuracy of solar radiation using only temperature data: A case study
Amin Mirbolouki
Faculty of Engineering, Kharazmi University, Tehran, Iran
Search for more papers by this authorSalim Heddam
Faculty of Science, Agronomy Department, Hydraulics Division University, Skikda, Algeria
Search for more papers by this authorKulwinder Singh Parmar
Department of Mathematics, IKG Punjab Technical University, Kapurthala, India
Search for more papers by this authorSlavisa Trajkovic
Faculty of Civil Engineering & Architecture, University of Nis, Nish, Serbia
Search for more papers by this authorCorresponding Author
Mojtaba Mehraein
Faculty of Engineering, Kharazmi University, Tehran, Iran
Correspondence
Mojtaba Mehraein, Faculty of Engineering, Kharazmi University, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorOzgur Kisi
School of Technology, Ilia State University, Tbilisi, Georgia
Search for more papers by this authorAmin Mirbolouki
Faculty of Engineering, Kharazmi University, Tehran, Iran
Search for more papers by this authorSalim Heddam
Faculty of Science, Agronomy Department, Hydraulics Division University, Skikda, Algeria
Search for more papers by this authorKulwinder Singh Parmar
Department of Mathematics, IKG Punjab Technical University, Kapurthala, India
Search for more papers by this authorSlavisa Trajkovic
Faculty of Civil Engineering & Architecture, University of Nis, Nish, Serbia
Search for more papers by this authorCorresponding Author
Mojtaba Mehraein
Faculty of Engineering, Kharazmi University, Tehran, Iran
Correspondence
Mojtaba Mehraein, Faculty of Engineering, Kharazmi University, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorOzgur Kisi
School of Technology, Ilia State University, Tbilisi, Georgia
Search for more papers by this authorSummary
Estimation of solar radiation (SR) carries importance for planning available renewable energy, and it is also beneficial for solving agricultural, meteorological, and engineering problems. This study compares the ability of hybrid adaptive neuro fuzzy (ANFIS) models and long short-term memory to search a suitable approach for SR prediction with minimum number of input parameters (temperature) in Mediterranean region of Turkey, which could be useful for the regions in which other effective parameters (eg, relative humidity, wind speed) are not available. The models considered were assessed by considering four data splitting scenarios, 50% train—50% test, 60% train—40% test, 70% train—30% test, and 80% train—20% test. Among the hybrid methods, the ANFIS with grey wolf optimization and genetic algorithm showed a superior accuracy. The study shows that applying different data splitting scenarios is necessary for better assessment of the data-driven methods since the accuracies of the implemented methods increase by about 30% to 60% when the splitting data scenario varies from 50-50% to 80-20%. Sensitivity analysis shows that the performance of the model increases by about 40% using extraterrestrial radiation for the best model. The ANFIS with grey wolf optimization and genetic algorithm is recommended to predict monthly solar radiation with limited input data.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Sarafraz MM, Safaei MR. Diurnal thermal evaluation of an evacuated tube solar 1 collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy. 2019a; 142: 364-372. https://doi.org/10.1016/j.renene.2019.04.091
- 2Sarafraz MM, Tlili I, Mohammad Abdul Baseer MA, Safaei MR. Potential of solar collectors for clean thermal energy production in smart cities using nanofluids: experimental assessment and efficiency improvement. Appl Sci. 2019b; 9: 1877. https://doi.org/10.3390/app9091877
- 3Eltaweel M, Abdel-Rahmin AA. Energy and exergy analysis for stationary solar collectors using nanofluids: a review. Int J Energy Res. 2021; 45: 3643-3670. https://doi.org/10.1002/er.6107
- 4Ghimire S, Deo RC, Raj N, Mi J. Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Appl Energy. 2019; 253:113541. https://doi.org/10.1016/j.apenergy.2019.113541
- 5Guermoui M, Gairaa K, Boland J, Arrif T. A novel hybrid model for solar radiation forecasting using support vector machine and bee colony optimization algorithm: review and case study. J Sol Energy Eng. 2021; 143(2):020801. https://doi.org/10.1115/1.4047852
- 6Hayat MB, Ali D, Monyake KC, Alagha L, Ahmed N. Solar energy-a look into power generation, challenges, and a solar-powered future. Int J Energy Res. 2019; 43: 1049-1067. https://doi.org/10.1002/er.4252
- 7Zhao R, Wang K, Wu G, Zhou C. Temperature annual cycle variations and responses to surface solar radiation in China between 1960 and 2016. Int J Climatol. 2020; 41: 1-20. https://doi.org/10.1002/joc.6895
- 8Cunha AC, Filho LRAG, Tanaka AA, Goes BC, Putti FF. Influence of the estimated global solar radiation on the reference evapotranspiration obtained through the Penman-Monteith FAO 56 method. Agr Water Manag. 2021; 243:106421. https://doi.org/10.1016/j.agwat.2020.106491
- 9Diao R, Sun L, Yang F, Lin B. Performance of building energy supply systems using renewable energy. Int J Energy Res. 2020; 44: 9960-9973. https://doi.org/10.1002/er.5528
- 10Yao W, Zhang C, Wang X, Sheng J. The research of new daily diffuse solar radiation models modified by air quality index (AQI) in the region with heavy fog and haze. Energy Convers Manage. 2017; 139: 140-150. https://doi.org/10.1016/j.enconman.2017.02.041
- 11Jeong DI, St-Hilaire A, Gratton Y, Bélanger C, Saad C. A guideline to select an estimation model of daily global solar radiation between geostatistical interpolation and stochastic simulation approaches. Renew Energy. 2017; 103: 70-80. https://doi.org/10.1016/j.renene.2016.11.022
- 12Agbulut U, Gürel AE, Biçen Y. Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison. Renew Sustain Energy Rev. 2021; 135:110114. https://doi.org/10.1016/j.rser.2020.110114
- 13Kisi O, Alizamir M, Trajkovic S, Shiri J, Kim S. Solar radiation estimation in Mediterranean climate by weather variables using a novel Bayesian model averaging and machine learning methods. Neural Process Lett. 2020; 52: 2297-2318. https://doi.org/10.1007/s11063-020-10350-4
- 14Sharifi SS, Rezaverdinejad V, Nourani V. Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: a comparative study of selected temperature-based approaches. J Atmos Sol-Terr Phys. 2016; 149: 131-145. https://doi.org/10.1016/j.jastp.2016.10.008
- 15Bristow KL, Campbell GS. On the relationship between incoming solar–radiation and daily maximum and minimum temperature. Agric Meteor. 1984; 31: 159-166. https://doi.org/10.1016/0168-1923(84)90017-0
- 16Hargreaves GH, Samani ZA. Estimating potential evapotranspiration. J Irrig Drain Div. 1982; 108(3): 225-230.
- 17Czekalski D, Obstawski P, Bakon T. Possibilities to estimate daily solar radiation on 2-Axis tracking plane using a model based on temperature amplitude. Sustainability. 2020; 12: 23. https://doi.org/10.3390/su12239909
- 18Lapa BFC, Hurtado DEC, Cadillo AYR, Hernandez JRM, Vivas ABC. Estimacion de la radiacion solar global, mediante temperaturas extremas, aplicando el Modelo Bristow-Campbell en la region Junin, Peru (estimation of global solar radiation, using extreme temperatures, applying the Bristow-Campbell model in the Junín region), Ingeniare. Rev Chil Ing. 2019; 27(4): 643-651. https://doi.org/10.4067/S0718-33052019000400643
10.4067/S0718-33052019000400643 Google Scholar
- 19Mirmasoudi S, Byrne J, Kroebel R, Johnson D, McDonald R. A novel time-effective model for daily distributed solar radiation estimates across variable terrain. Int J Energy Environ Eng. 2018; 9: 383-398. https://doi.org/10.1007/s40095-018-0279-3
- 20Demircan C, Bayrakcı HC, Kecebas A. Machine learning-based improvement of empiric models for an accurate estimating process of global solar radiation. Sustain Energy Technol A. 2020; 37:100574. https://doi.org/10.1016/j.seta.2019.100574
- 21Dhakal S, Gautam Y, Bhattarai A. Evaluation of temperature-based empirical models and machine learning techniques to estimate daily global solar radiation at Biratnagar airport-Nepal. Adv Meteorol. 2020; 2020:8895311. https://doi.org/10.1155/2020/8895311
- 22Gurel AE, Agbulut U, Bicen Y. Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation. J Clean Prod. 2020; 277:122353. https://doi.org/10.1016/j.jclepro.2020.122353
- 23Samadianfard S, Majnooni-Heris A, Qasem SN, Kisi O, Shamshirband S, Chau KW. Daily global solar radiation modeling using data-driven techniques and empirical equations in a semi-arid climate. Eng Appl Comput Fluid. 2019; 13(1): 142-157. https://doi.org/10.1080/19942060.2018.1560364
- 24Zhou Y, Liu Y, Wang D, Liu X, Wang Y. A review on global solar radiation prediction with machine learning models in a comprehensive perspective. Energy Convers Manage. 2021; 235:113960. https://doi.org/10.1016/j.enconman.2021.113960
- 25Garud KS, Jayaraj S, Lee MY. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. Int J Energy Res. 2021; 45: 6-35. https://doi.org/10.1002/er.5608
- 26Marzo A, Trigo-Gonzalez M, Alonso-Montesinos J, et al. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renew Energy. 2017; 113: 303-311. https://doi.org/10.1016/j.renene.2017.01.061
- 27Feng Y, Gong D, Zhang Q, Jiang S, Zhao L, Cui N. Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Convers Manag. 2019; 198:111780. https://doi.org/10.1016/j.enconman.2019.111780
- 28Chen JL, Li GS, Xiao BB, et al. Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature. Energ Conver Manage. 2015; 89: 318-329. https://doi.org/10.1016/j.enconman.2014.10.004
- 29Mohammadi K, Shamshirband S, Tong CW, Arif M, Petkovic D, Ch S. A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers Manag. 2015; 92: 162-171. https://doi.org/10.1016/j.enconman.2014.12.050
- 30Quej VH, Almorox J, Arnaldo JA, Saito L. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. J Atmos Sol Terr Phys. 2017; 155: 62-70. https://doi.org/10.1016/j.jastp.2017.02.002
- 31Guermoui M, Abdelazis R, Gairaa K, Djemoui L, Benkaciali S. New temperature-based predicting model for global solar radiation using support vector regression. Int J Ambient Energy. 2020; 41: 1-11. https://doi.org/10.1080/01430750.2019.1708792
10.1080/01430750.2019.1708792 Google Scholar
- 32Piri J, Kisi O. Modelling solar radiation reached to the earth using ANFIS, NN-ARX, and empirical models (case studies: Zahedan and Bojnurd stations). J Atmos sol-Terr Phy. 2015; 123: 39-47. https://doi.org/10.1016/j.jastp.2014.12.006
- 33Mohammadi K, Shamshirband S, Kamsin A, Lai PC, Mansor Z. Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure. Renew Sustain Energy Rev. 2016; 63: 423-434. https://doi.org/10.1016/j.rser.2016.05.065
- 34Zou L, Wang L, Xia L, Lin A, Hu B, Zhu H. Prediction and comparison of solar radiation using improved empirical models and adaptive Neuro-fuzzy inference systems. Renew Energy. 2017; 106: 343-353. https://doi.org/10.1016/j.renene.2017.01.042
- 35Wang L, Kisi O, Zounemat-Kermani M, et al. Prediction of solar radiation in China using different adaptive neuro-fuzzy methods and M5 model tree. Int J Climatol. 2017; 37: 1141-1155. https://doi.org/10.1002/joc.4762
- 36Halabi LM, Mekhilef S, Hossain M. Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Appl Energy. 2018; 213: 247-261. https://doi.org/10.1016/j.apenergy.2018.01.035
- 37Salisu S, Mustafa MW, Mustapha M, Mohammed OO. Solar radiation forecasting in Nigeria based on hybrid PSO-ANFIS and WT-ANFIS approach. Int J Electr Comput Eng. 2019; 9(5): 3916-3926. https://doi.org/10.11591/ijece.v9i5.pp3916-3926
10.11591/ijece.v9i5.pp3916-3926 Google Scholar
- 38Kisi O, Heddam S, Yaseen ZM. The implementation of univariable scheme-based air temperature for solar radiation prediction: new development of dynamic evolving neural-fuzzy inference system model. Appl Energy. 2019; 241: 184-195. https://doi.org/10.1016/j.apenergy.2019.03.089
- 39Naderloo L. Prediction of solar radiation on the horizon using neural network methods, ANFIS and RSM (case study: Sarpol-e-Zahab township, Iran). J Earth Syst Sci. 2020; 129(1): 148. https://doi.org/10.1007/s12040-020-01414-z
- 40Tao H, Ewees AA, Al-Sulttani AO, et al. Global solar radiation prediction over North Dakota using air temperature: development of novel hybrid intelligence model. Energy Rep. 2021; 7: 136-157. https://doi.org/10.1016/j.egyr.2020.11.033
10.1016/j.egyr.2020.11.033 Google Scholar
- 41Li X, Peng L, Yao X, et al. Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation. Environ Pollut. 2017; 231(1): 997-1004. https://doi.org/10.1016/j.envpol.2017.08.114
- 42Zhai W, Cheng C. A long short-term memory approach to predicting air quality based on social media data. Atmos Environ. 2020; 237:117411. https://doi.org/10.1016/j.atmosenv.2020.117411
- 43Yin J, Deng Z, Ines AVM, Wu J, Rasu E. Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM). Agr Water Manage. 2020; 242:106386. https://doi.org/10.1016/j.agwat.2020.106386
- 44Ma X, Tao Z, Wang Y, Yu H, Wang Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp Res Part C: Emerg Technol. 2015; 54: 187-197. https://doi.org/10.1016/j.trc.2015.03.014
- 45Atef S, Eltawil AB. Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting. Electr Power Syst Res. 2020; 187:106489. https://doi.org/10.1016/j.epsr.2020.106489
- 46Zhang CJ, Wang HY, Zeng J, Ma LM, Guan L. Tiny-rain net: a deep convolutional neural network with bidirectional long short term memory model for short-term rainfall prediction. Meteorol Appl. 2020; 27(5):e1956. https://doi.org/10.1002/met.1956
- 47Chen X, Huang J, Han Z, et al. The importance of short lag-time in the runoff forecasting model based on long short-term memory. J Hydrol. 2020; 589:125359. https://doi.org/10.1016/j.jhydrol.2020.125359
- 48Zhu S, Luo X, Yuan X, Xu Z. An improved long short-term memory network for streamflow forecasting in the upper Yangtze River. Stoch Environ Res Risk Assess. 2020; 34: 1313-1329. https://doi.org/10.1007/s00477-020-01766-4
- 49Gao B, Huang X, Shi J, Tai Y, Zhang J. Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks. Renew Energy. 2020; 162: 1665-1683. https://doi.org/10.1016/j.renene.2020.09.141
- 50Yeom JM, Deo RC, Adamowski JF, Park S, Lee CS. Spatial mapping of short-term solar radiation prediction incorporating geostationary satellite images coupled with deep convolutional LSTM networks for South Korea. Environ Res Lett. 2020; 15:094025. https://doi.org/10.1088/1748-9326/ab9467
- 51Huynh AL, Deo RC, An-Vo DA, Ali M, Raj N, Abdulla S. Near real-time global solar radiation forecasting at multiple time-step horizons using the long short-term memory network. Energies. 2020; 13: 3517. https://doi.org/10.3390/en13143517
- 52Sensoy, S., Demircan, M., Balta, I. (2007). Climate of Turkey. Turkish State meteorological service website. http://www.mgm.gov.tr/files/iklim/turkiye_iklimi.pdf
- 53 Accreditation Certificate from Calibration Center (n.d.), accessed June 5, 2021, https://mgm.gov.tr/FILES/kurumsal/kalibrasyon/tanitim-en.pdf.
- 54Zadeh LA. Fuzzy sets. Inform Control. 1965; 8(3): 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
10.1016/S0019-9958(65)90241-X Google Scholar
- 55Adnan RM, Liang Z, Parmar KS, Soni K, Kisi O. Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data. Neural Comput Appl. 2020; 33: 2853-2871. https://doi.org/10.1007/s00521-020-05164-3
- 56Adnan RM, Malik A, Kumar A. Pan evaporation modeling by three different neuro-fuzzy intelligent systems using climatic inputs. Arab J Geosci. 2019; 12: 606. https://doi.org/10.1007/s12517-019-4781-6
- 57Parmar KS, Makkhan SJS, Kaushal S. Neuro-fuzzy-wavelet hybrid approach to estimate the future trends of river water quality. Neural Comput Appl. 2019; 31: 8463-8473. https://doi.org/10.1007/s00521-019-04560-8
- 58Holland JH. Adaptation in Natural and Artificial Systems, An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Cambridge, MA: MIT Press; 1975.
- 59Liepins GE, Hilliard MR. Genetic algorithms: foundations and applications. Ann Oper Res. 1989; 21: 31-57. https://doi.org/10.1007/BF02022092
10.1007/BF02022092 Google Scholar
- 60Weile DS, Michielssen E. Genetic algorithm optimization applied to electromagnetics: a review. IEEE T Antenn Propag. 1997; 45(3): 343-353. https://doi.org/10.1109/8.558650
- 61Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. Proc. Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan). Piscataway, NJ: IEEE Service Center; 1995: 39-43.
10.1109/MHS.1995.494215 Google Scholar
- 62Kennedy J, Eberhart RC. Particle swarm optimization. Proc. IEEE International Conference on Neural Networks (Perth, Australia). Piscataway, NJ, pp. IV: IEEE Service Center; 1995: 1942-1948.
10.1109/ICNN.1995.488968 Google Scholar
- 63Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Swarm Intell. 2007; 1: 33-57. https://doi.org/10.1007/s11721-007-0002-0
10.1007/s11721-007-0002-0 Google Scholar
- 64Wang D, Tan D, Liu L. Particle swarm optimization algorithm: an overview. Soft Comput. 2018; 22: 387-408. https://doi.org/10.1007/s00500-016-2474-6
- 65Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw. 2014; 69: 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
- 66Al-Tashi Q, Abdul Kadir SJ, Rais HM, Mirjalili S, Alhussian H. Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access. 2019; 7: 39496-39508. https://doi.org/10.1109/ACCESS.2019.2906757
- 67Emary E, Zawbaa HM, Hassanien AL. Binary grey wolf optimization approaches for feature selection. Neurocomputing. 2016; 172: 371-381. https://doi.org/10.1016/j.neucom.2015.06.083
- 68Teng ZJ, Lv Jl, Guo L. An improved hybrid grey wolf optimization algorithm. Soft Comput. 2019; 23: 6617-6631. https://doi.org/10.1007/s00500-018-3310-y
- 69Bao X, Jia H, Lang C. A novel hybrid Harris Hawks optimization for color image multilevel thresholding segmentation. IEEE Access. 2019; 7: 76529-76546. https://doi.org/10.1109/ACCESS.2019.2921545
- 70Du P, Wang J, Hao Y, Niu T, Yang W. A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting. Appl Soft Comput. 2020; 96:106620. https://doi.org/10.1016/j.asoc.2020.106620
- 71Ewees AA, Elaziz MA. Performance analysis of chaotic multi-verse Harris Hawks optimization: a case study on solving engineering problems. Eng Appl Artif Intel. 2020; 88:103370. https://doi.org/10.1016/j.engappai.2019.103370000000
- 72Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. Harris hawks optimization: algorithm and applications. Future Gener Comput Syst. 2019; 97: 849-872. https://doi.org/10.1016/j.future.2019.02.028
- 73Gensler A, Henze J, Sick B, Raabe N. Deep learning for solar power forecasting- An approach using AutoEncoder and LSTM neural networks. IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest; Budapest, Hungary: IEEE; 2016: 002858-002865. https://doi.org/10.1109/SMC.2016.7844673
10.1109/SMC.2016.7844673 Google Scholar
- 74Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005; 18(5–6): 602-610. https://doi.org/10.1016/j.neunet.2005.06.042
- 75Nelson DMQ, Pereira ACM, Oliveira RA. Stock market's price movement prediction with LSTM neural networks. International Joint Conference on Neural Networks (IJCNN). Anchorage, AK; IEEE; 2017: 1419-1426. https://doi.org/10.1109/IJCNN.2017.7966019
10.1109/IJCNN.2017.7966019 Google Scholar
- 76Sundermeyer M, Ney H, Schlüter R. From feedforward to recurrent LSTM neural networks for language modeling. IEEE/ACM Trans Audio Speech Lang Process. 2015; 23(3): 517-529. https://doi.org/10.1109/TASLP.2015.2400218
- 77Bakay MS, Agbulut U. Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms. J Clean Prod. 2021; 285: 287. https://doi.org/10.1016/j.jclepro.2020.125324
- 78Gouda SG, Hussein Z, Luo S, Yuan Q. Model selection for accurate daily global solar radiation prediction in China. J Clean Prod. 2019; 221: 132-144. https://doi.org/10.1016/j.jclepro.2019.02.211
- 79Rehman S. Solar radiation over Saudi Arabia and comparisons with empirical models. Energy. 1998; 23(12): 1077-1082. https://doi.org/10.1016/S0360-5442(98)00057-7
- 80Yang L, Cao Q, Yu Y, Liu Y. Comparison of daily diffuse radiation models in regions of China without solar radiation measurement. Energy. 2020; 191:116571. https://doi.org/10.1016/j.energy.2019.116571
- 81Zang H, Cheng L, Ding T, et al. Application of functional deep belief network for estimating daily global solar radiation: a case study in China. Energy. 2020; 191:116502. https://doi.org/10.1016/j.energy.2019.116502
- 82Fan J, Wang X, Wu L, et al. New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China. Energy Convers Manage. 2018; 156: 618-625. https://doi.org/10.1016/j.enconman.2017.11.085
- 83Heinemann AB, Van Oort PA, Fernandes DS, Maia ADHN. Sensitivity of APSIM/ ORYZA model due to estimation errors in solar radiation. Bragantia. 2012; 71(4): 572-582. https://doi.org/10.1590/S0006-87052012000400016
- 84Guijo-Rubio D, Durán-Rosal AM, Gutiérrez PA, et al. Evolutionary artificial neural networks for accurate solar radiation prediction. Energy. 2020; 210:118374. https://doi.org/10.1016/j.energy.2020.118374
- 85Feng Y, Hao W, Li H, Cui N, Gong D, Gao L. Machine learning models to quantify and map daily global solar radiation and photovoltaic power. Renew Sustain Energy Rev. 2020; 118:109393. https://doi.org/10.1016/j.rser.2019.109393
- 86Fan J, Wu L, Ma X, Zhou H, Zhang F. Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renew Energy. 2020; 145: 2034-2045. https://doi.org/10.1016/j.renene.2019.07.104
- 87Citakoglu H, Babayigit B, Haktanir NA. Solar radiation prediction using multi-gene genetic programming approach. Theor Appl Climatol. 2020; 142(3): 885-897. https://doi.org/10.1007/s00704-020-03356-4
- 88Mohammadi B, Aghashariatmadari Z. Estimation of solar radiation using neighboring stations through hybrid support vector regression boosted by Krill Herd algorithm. Arab J Geosci. 2020; 13: 363. https://doi.org/10.1007/s12517-020-05355-1
- 89Rogelj J, Den Elzen M, Höhne N, et al. Paris agreement climate proposals need a boost to keep warming well below 2 C. Nature. 2016; 534: 631-639. https://doi.org/10.1038/nature18307