Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review
Corresponding Author
Maheshwari Adaikkappan
Department of Electrical and Electronics Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India
Correspondence
Maheshwari Adaikkappan, Department of Electrical and Electronics Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India.
Email: [email protected]
Search for more papers by this authorNageswari Sathiyamoorthy
Department of Electrical and Electronics Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India
Search for more papers by this authorCorresponding Author
Maheshwari Adaikkappan
Department of Electrical and Electronics Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India
Correspondence
Maheshwari Adaikkappan, Department of Electrical and Electronics Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India.
Email: [email protected]
Search for more papers by this authorNageswari Sathiyamoorthy
Department of Electrical and Electronics Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India
Search for more papers by this authorFunding information: TEQIP
Summary
Extension of driving range and battery run time optimization are necessary key points in the modeling of Electric Vehicle (EV). In this view, Battery Management System (BMS) plays a major role to ensure a safe and trustworthy battery operation, especially when using Lithium-ion (Li-ion) batteries in an electric vehicle. Key function of BMS is State of Charge (SoC) estimation. A well-parameterized battery model is required for accurate state estimation. Consequently, the major factors to be considered in battery modeling are the SoC estimation and charging methodology of an effective BMS development. By focusing on these features, in this paper, the well-known battery models such as the electrochemical model, equivalent circuit model, and data-driven model are comprehensively reviewed along with their strengths and weaknesses. Further, the SoC estimation of a battery is also discussed by using standard methodologies such as direct estimation methods and model-based estimation methods. The comparisons of the three most distinct battery models and the classification of SoC estimation techniques to develop a proper BMS for EV with the focus on accuracy, configuration effort, computational complexity, ease of implementation, and real-time applications are systematically reviewed. In addition to this, convenient battery charging approaches with the consideration of some constraints such as charging time, charging efficiency, state of charge, state of health, charging voltage threshold, capacity fade, power fade, aging effect, capacity utilization, impedance rise, and temperature rise of the battery in EV are presented. Finally, the perspectives of the existing work and the recommended future research work of BMS are summarized.
REFERENCES
- 1How DNT, Hannan MA, Hossain Lipu MS, Ker PJ. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: a review. IEEE Access. 2019; 7:136116–136136. https://doi.org/10.1109/ACCESS.2019.2942213
- 2Shrivastava P, Soon TK, Bin Idris MYI, Mekhilef S. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew Sust Energ Rev. 2019; 113:109233. https://doi.org/10.1016/j.rser.2019.06.040
- 3Xing Y, Ma EWM, Tsui KL, Pecht M. Battery management systems in electric and hybrid vehicles. Energies. 2011; 4(11): 1840-1857. https://doi.org/10.3390/en4111840
- 4Wang Z, Hong J, Zhang L, Liu P. Voltage fault detection and precaution of batteries based on entropy and standard deviation for electric vehicles. Energy Procedia. 2017; 105: 2163-2168. https://doi.org/10.1016/j.egypro.2017.03.611
10.1016/j.egypro.2017.03.611 Google Scholar
- 5Gallardo-Lozano J, Romero-Cadaval E, Milanes-Montero MI, Guerrero-Martinez MA. Battery equalization active methods. J Power Sources. 2014; 246: 934-949. https://doi.org/10.1016/j.jpowsour.2013.08.026
- 6Zhang Z, Zhang L, Hu L, Huang C. Active cell balancing of lithium-ion battery pack based on average state of charge. Int J Energy Res. 2020; 44(4): 2535-2548. https://doi.org/10.1002/er.4876
- 7Doyle M, Fuller TF, Newman J. Modeling of Galvanostatic charge and discharge. J Electrochem Soc. 1993; 140(6): 1526-1533.
- 8Di Domenico D, Fiengo G, Stefanopoulou A. Lithium-ion battery state of charge estimation with a Kalman filter based on a electrochemical model. Paper presented at: 2008 IEEE International Conference on Control Applications. 2008. https://doi.org/10.1109/CCA.2008.4629639
10.1109/CCA.2008.4629639 Google Scholar
- 9Ahmed R, El Sayed M, Arasaratnam I, Tjong J, Habibi S. Reduced-order electrochemical model parameters identification and state of charge estimation for healthy and aged Li-ion batteries—part II: aged battery model and state of charge estimation. IEEE J Emerg Sel Top Power Electron. 2014; 2(3): 678-690. https://doi.org/10.1109/jestpe.2014.2331062
- 10Ahmed R, El Sayed M, Arasaratnam I, Tjong J, Habibi S. Reduced-order electrochemical model parameters identification and SOC estimation for healthy and aged Li-ion batteries part I: parameterization model development for healthy batteries. IEEE J Emerg Sel Top Power Electron. 2014; 2(3): 659-677. https://doi.org/10.1109/jestpe.2014.2331059
- 11Han X, Ouyang M, Lu L, Li J. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part I: diffusion simplification and single particle model. J Power Sources. 2015; 278: 802-813. https://doi.org/10.1016/j.jpowsour.2014.12.101
- 12Zou C, Manzie C, Nesic D. A framework for simplification of PDE-based lithium-ion battery models. IEEE Trans Control Syst Technol. 2016; 24(5): 1594-1609. https://doi.org/10.1109/TCST.2015.2502899
- 13Sitterly M, Wang LY, Yin GG, Wang C. Enhanced identification of battery models for real-time battery management. IEEE Trans Sustain Energy. 2011; 2(3): 300-308. https://doi.org/10.1109/TSTE.2011.2116813
- 14Chen M, Rincón-Mora GA. Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Trans Energy Convers. 2006; 21(2): 504-511. https://doi.org/10.1109/TEC.2006.874229
- 15Hu X, Li S, Peng H. A comparative study of equivalent circuit models for Li-ion batteries. J Power Sources. 2012; 198: 359-367. https://doi.org/10.1016/j.jpowsour.2011.10.013
- 16Plett GL. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - part 2. Modeling and identification. J Power Sources. 2004; 134(2): 262-276. https://doi.org/10.1016/j.jpowsour.2004.02.032
- 17Nejad S, Gladwin DT, Stone DA. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states. J Power Sources. 2016; 316: 183-196. https://doi.org/10.1016/j.jpowsour.2016.03.042
- 18Xu Z, Gao S, Yang S. LiFePO4 battery state of charge estimation based on the improved Thevenin equivalent circuit model and Kalman filtering. J Renew Sustain Energy. 2016; 8(2):024103. https://doi.org/10.1063/1.4944335
- 19Siguang L, Chengning Z. Study on battery management system and lithium-ion battery. Paper presented at: Proceedings - 2009 International Conference on Computer and Automation Engineering, ICCAE 2009, 2009, pp. 218–222. https://doi.org/10.1109/ICCAE.2009.11
10.1109/ICCAE.2009.11 Google Scholar
- 20Id JM, Luo G, Ricco M, Swierczynski M. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles. Appl Sci. 2018; 8:659. https://doi.org/10.3390/app8050659
- 21Omar N, Widanage D, Abdel Monem M, et al. Optimization of an advanced battery model parameter minimization tool and development of a novel electrical model for lithium-ion batteries. Int Trans Electr Energy Syst. 2014; 24: 1747-1767.
- 22Lai X, Gao W, Zheng Y, Ouyang M, Li J, Han X. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries. Electrochim Acta. 2019; 295: 1057-1066. https://doi.org/10.1016/j.electacta.2018.11.134
- 23Fotouhi A, Auger DJ, Member S, Propp K, Longo S. Accuracy versus simplicity in online battery model identification. IEEE Trans Syst Man Cybern Syst. 2018; 48(2): 195-206. https://doi.org/10.17862/cranfield.rd.3545847
- 24Fotouhi A, Propp K, Auger DJ. Electric vehicle battery model identification and state of charge estimation in real world driving cycles. Paper presented at: 2015 7th Computer Science and Electronic Engineering Conference (CEEC): Conference Proceedings: September 24-25, 2015, University of Essex, UK, 2015, pp. 243–248.
- 25Yao LW, Aziz JA, Kong PY, Idris NRN. Modeling of lithium-ion battery using MATLAB/Simulink. Paper presented at: IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, 2013, pp. 1729–1734.
- 26Hu Y, Wang YY. Two time-scaled battery model identification with application to battery state estimation. IEEE Trans Control Syst Technol. 2015; 23(3): 1180-1188. https://doi.org/10.1109/TCST.2014.2358846
- 27Yang K, Tang Y, Zhang Z. Parameter identification and state-of-charge estimation for lithium-ion batteries using separated time scales and extended Kalman filter. Energies. 2021; 14(1054): 1-15.
- 28Wang A, Jin X, Li Y, Li N. LiFePO4 battery modeling and SOC estimation algorithm. Paper presented at: Proceedings of the the 29th Chinese Control and Decision Conference (2017CCDC): May 28-30, 2017, Chongqing, China, 2017, pp. 7574–7578.
- 29Cao Y, Kroeze RC, Krein PT. Multi-timescale parametric electrical battery model for use in dynamic electric vehicle simulations. IEEE Trans Transp Electrif. 2016; 2(4): 432-442. https://doi.org/10.1109/TTE.2016.2569069
- 30Zhang C, Allafi W, Dinh Q, Ascencio P, Marco J. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique. Energy. 2018; 142: 678-688. https://doi.org/10.1016/j.energy.2017.10.043
- 31Thirugnanam K, Joy TPER, Singh M, Kumar P. Mathematical modeling of li-ion battery using genetic algorithm approach for V2G applications. IEEE Trans Energy Convers. 2014; 29(2): 332-343. https://doi.org/10.1109/TEC.2014.2298460
- 32Nugroho A, Rijanto E, Wijaya FD, Nugroho P. Battery state of charge estimation by using a combination of coulomb counting and dynamic model with adjusted gain. Paper presented at: Proceeding - 2015 International Conference on Sustainable Energy Engineering and Application: Sustainable Energy for Greater Development, ICSEEA 2015, 2016. https://doi.org/10.1109/ICSEEA.2015.7380745
10.1109/ICSEEA.2015.7380745 Google Scholar
- 33Qiu X, Wu W, Wang S. Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method. J Power Sources. 2020; 450: 1-13. https://doi.org/10.1016/j.jpowsour.2020.227700
- 34Malik A, Zhang Z, Agarwal RK. Extraction of battery parameters using a multi-objective genetic algorithm with a non-linear circuit model. J Power Sources. 2014; 259: 76-86. https://doi.org/10.1016/j.jpowsour.2014.02.062
- 35Sitterly M, Wang LY, Yin G. Enhanced Identification Algorithms for Battery Models under Noisy Measurements. SAE Int. 2010. https://doi.org/10.4271/2010-01-1768
10.4271/2010-01-1768 Google Scholar
- 36Sitterly MW, Wang LY. Identification of battery models for enhanced battery management. Paper presented at: NSTI-Nanotech 2010, 2010, 3, pp. 809–812.
- 37Boujoudar Y, Elmoussaoui H, Lamhamdi T. Lithium-ion batteries modeling and state of charge estimation using artificial neural network. Int J Electr Comput Eng. 2019; 9(5): 3415-3422. https://doi.org/10.11591/ijece.v9i5.pp3415-3422
10.11591/ijece.v9i5.pp3415-3422 Google Scholar
- 38Awadallah MA, Venkatesh B. Accuracy improvement of SOC estimation in lithium-ion batteries. J Energy Storage. 2016; 6: 95-104. https://doi.org/10.1016/j.est.2016.03.003
- 39Khumprom P, Yodo N. A data-driven predictive prognostic model for lithium-ion batteries based on a deep learning algorithm. Energies. 2019; 12(4): 1-21. https://doi.org/10.3390/en12040660
- 40Klass V, Behm M, Lindbergh G. Capturing lithium-ion battery dynamics with support vector machine-based battery model. J Power Sources. 2015; 298: 92-101. https://doi.org/10.1016/j.jpowsour.2015.08.036
- 41Junping W, Quanshi C, Binggang C. Support vector machine based battery model for electric vehicles. Energy Convers Manag. 2006; 47(7–8): 858-864. https://doi.org/10.1016/j.enconman.2005.06.013
- 42Weng C, Sun J, Peng H. Model parametrization and adaptation based on the invariance of support vectors with applications to battery state-of-health monitoring. IEEE Trans Veh Technol. 2015; 64(9): 3908-3917. https://doi.org/10.1109/TVT.2014.2364554
- 43He W, Williard N, Chen C, Pecht M. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation. Int J Electr Power Energy Syst. 2014; 62: 783-791. https://doi.org/10.1016/j.ijepes.2014.04.059
- 44Chemali E, Kollmeyer PJ, Preindl M, Emadi A. State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach. J Power Sources. 2018; 400: 242-255. https://doi.org/10.1016/j.jpowsour.2018.06.104
- 45Zhang C, Zhu Y, Dong G, Wei J. Data-driven lithium-ion battery states estimation using neural networks and particle filtering. Int J Energy Res. 2019; 43(14): 8230-8241. https://doi.org/10.1002/er.4820
- 46Li C, Xiao F, Fan Y. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit. Energies. 2019; 12(9):1592. https://doi.org/10.3390/en12091592
- 47Ardeshiri RR, Ma C. Multivariate gated recurrent unit for battery remaining useful life prediction: a deep learning approach. Int J Energy Res. 2021; 45:16633–16648. https://doi.org/10.1002/ER.6910
- 48Xiao F, Li C, Fan Y, Yang G, Tang X. State of charge estimation for lithium-ion battery based on Gaussian process regression with deep recurrent kernel. Int J Electr Power Energy Syst. 2021; 124:106369. https://doi.org/10.1016/j.ijepes.2020.106369
- 49Ungurean L, Micea MV, Cârstoiu G. Online state of health prediction method for lithium-ion batteries, based on gated recurrent unit neural networks. Int J Energy Res. 2020; 44(8): 6767-6777. https://doi.org/10.1002/ER.5413
- 50Zhang Y, Xiong R, He H, Pecht MG. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Veh Technol. 2018; 67(7): 5695-5705. https://doi.org/10.1109/TVT.2018.2805189
- 51Yang F, Zhang S, Li W, Miao Q. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. Energy. 2020; 201:117664. https://doi.org/10.1016/j.energy.2020.117664
- 52Kaur K, Garg A, Cui X, Singh S, Panigrahi BK. Deep learning networks for capacity estimation for monitoring SOH of Li-ion batteries for electric vehicles. Int J Energy Res. 2021; 45(2): 3113-3128. https://doi.org/10.1002/ER.6005
- 53Heinrich F, Noering FKD, Pruckner M, Jonas K. Unsupervised data-preprocessing for long short-term memory based battery model under electric vehicle operation. J Energy Storage. 2021; 38:102598. https://doi.org/10.1016/J.EST.2021.102598
- 54Samadi MF, Saif M. State-space modeling and observer design of Li-ion batteries using Takagi-Sugeno fuzzy system. IEEE Trans Control Syst Technol. 2017; 25(1): 301-308. https://doi.org/10.1109/TCST.2016.2549270
- 55Hu JN, Hu JJ, Lin HB, et al. State-of-charge estimation for battery management system using optimized support vector machine for regression. J Power Sources. 2014; 269: 682-693. https://doi.org/10.1016/j.jpowsour.2014.07.016
- 56Kara A. A data-driven approach based on deep neural networks for lithium-ion battery prognostics. Neural Comput Applic. 2021; 1–14. https://doi.org/10.1007/s00521-021-05976-x
- 57Chen LR, Hsu RC, Liu CS. A design of a grey-predicted Li-ion battery charge system. IEEE Trans Ind Electron. 2008; 55(10): 3692-3701. https://doi.org/10.1109/TIE.2008.928106
- 58Zheng D, Wang H, An J, Chen J, Pan H, Chen L. Real-time estimation of battery state of charge with metabolic grey model and LabVIEW platform. IEEE Access. 2018; 6:13170–13180. https://doi.org/10.1109/ACCESS.2018.2807805
- 59Ben Sassi H, Errahimi F, Es-Sbai N, Alaoui C. Comparative study of ANN/KF for on-board SOC estimation for vehicular applications. J Energy Storage. 2019; 25:100822. https://doi.org/10.1016/j.est.2019.100822
- 60Hannan MA, Lipu MSH, Hussain A, Saad MH, Ayob A. Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm. IEEE Access. 2018; 6:10069–10079. https://doi.org/10.1109/ACCESS.2018.2797976
- 61Zhang L, Zheng M, Du D, et al. State-of-charge estimation of lithium-ion battery pack based on improved RBF neural networks. Hindawi. 2020; 2020: 1-10.
- 62Cui D, Xia B, Zhang R, et al. A novel intelligent method for the state of charge estimation of lithium-ion batteries using a discrete wavelet transform-based wavelet neural network. Energies. 2018; 11(4): 995-1012. https://doi.org/10.3390/en11040995
- 63Nagulapati VM, Lee H, Jung DW, et al. A novel combined multi-battery dataset based approach for enhanced prediction accuracy of data driven prognostic models in capacity estimation of lithium ion batteries. Energy AI. 2021; 5:100089. https://doi.org/10.1016/j.egyai.2021.100089
10.1016/j.egyai.2021.100089 Google Scholar
- 64Deng Z, Hu X, Lin X, Che Y, Xu L, Guo W. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression. Energy. 2020; 205:118000. https://doi.org/10.1016/j.energy.2020.118000
- 65Babaeiyazdi I, Rezaei-Zare A, Shokrzadeh S. State of charge prediction of EV Li-ion batteries using EIS: a machine learning approach. Energy. 2021; 223:120116. https://doi.org/10.1016/j.energy.2021.120116
- 66Du J, Liu Z, Wang Y. State of charge estimation for Li-ion battery based on model from extreme learning machine. Control Eng Pract. 2014; 26(1): 11-19. https://doi.org/10.1016/j.conengprac.2013.12.014
- 67Hossain Lipu MS, Hannan MA, Hussain A, Saad MH, Ayob A, Uddin MN. Extreme learning machine model for state-of-charge estimation of lithium-ion battery using gravitational search algorithm. IEEE Trans Ind Appl. 2019; 55(4): 4225-4234. https://doi.org/10.1109/TIA.2019.2902532
- 68Wu Z, Christofides PD. Economic machine-learning-based predictive control of nonlinear systems. Mathematics. 2019; 7(6): 1-20. https://doi.org/10.3390/math7060494
- 69Hasan MM, Ali Pourmousavi S, Jahanbani Ardakani A, Saha TK. A data-driven approach to estimate battery cell temperature using a nonlinear autoregressive exogenous neural network model. J Energy Storage. 2020; 32:101879. https://doi.org/10.1016/j.est.2020.101879
- 70dos Reis G, Strange C, Yadav M, Li S. Lithium-ion battery data and where to find it. Energy AI. 2021; 5:100081. https://doi.org/10.1016/j.egyai.2021.100081
10.1016/j.egyai.2021.100081 Google Scholar
- 71Meng J, Stroe DI, Ricco M, Luo G, Teodorescu R. A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model. IEEE Trans Ind Electron. 2019; 66(10): 7717-7727. https://doi.org/10.1109/TIE.2018.2880668
- 72Xia B, Wang H, Tian Y, Wang M, Sun W, Xu Z. State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter. Energies. 2015; 8(6): 5916-5936. https://doi.org/10.3390/en8065916
- 73Yang G, Li J, Fu Z, Guo L. Adaptive state of charge estimation of Lithium-ion battery based on battery capacity degradation model. Energy Procedia. 2018; 152: 514-519. https://doi.org/10.1016/j.egypro.2018.09.203
10.1016/j.egypro.2018.09.203 Google Scholar
- 74Xu Y, Hu M, Zhou A, et al. State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter. Appl Math Model. 2020; 77: 1255-1272. https://doi.org/10.1016/j.apm.2019.09.011
- 75Liu G, Xu C, Jiang K, Wang K. State of charge and model parameters estimation of liquid metal batteries based on adaptive unscented Kalman filter. Energy Procedia. 2019; 158: 4477-4482. https://doi.org/10.1016/j.egypro.2019.01.765
10.1016/j.egypro.2019.01.765 Google Scholar
- 76Yu Q, Xiong R, Lin C, Shen W, Deng J. Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters. IEEE Trans Veh Technol. 2017; 66: 8693-8701. https://doi.org/10.1109/TVT.2017.2709326
- 77Liu X, He Y, Zhang J, Zeng G. A new state-of-charge estimation method for electric vehicle lithium-ion batteries based on multiple input parameter fitting model. Int J Energy Res. 2017; 41: 1265-1276. https://doi.org/10.1002/er.3705
- 78Dang X, Yan L, Xu K, Wu X, Jiang H, Sun H. Open-circuit voltage-based state of charge estimation of Lithium-ion battery using dual neural network fusion battery model. Electrochim Acta. 2016; 188: 356-366. https://doi.org/10.1016/j.electacta.2015.12.001
- 79Plett GL. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: simultaneous state and parameter estimation. J Power Sources. 2006; 161(2): 1369-1384. https://doi.org/10.1016/j.jpowsour.2006.06.004
- 80Hannan MA, Lipu MSH, Hussain A, Mohamed A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew Sust Energ Rev. 2017; 78: 834-854. https://doi.org/10.1016/j.rser.2017.05.001
- 81Xie J, Ma J, Bai K. Enhanced coulomb counting method for state-of-charge estimation of lithium-ion batteries based on peukert's law and coulombic efficiency. J Power Electron. 2018; 18(3): 910-922. https://doi.org/10.6113/JPE.2018.18.3.910
- 82Leksono E, Haq IN, Iqbal M, Soelami FXN, Merthayasa IGN. State of charge (SoC) estimation on LiFePO4 battery module using coulomb counting methods with modified Peukert. Paper presented at: Proceedings of the 2013 Joint International Conference on Rural Information and Communication Technology and Electric-Vehicle Technology, rICT and ICEV-T 2013, 2013. 1–5. https://doi.org/10.1109/rICT-ICeVT.2013.6741545
10.1109/rICT-ICeVT.2013.6741545 Google Scholar
- 83Yang A, Wang Y, Yang F, et al. A comprehensive investigation of lithium-ion battery degradation performance at different discharge rates. J Power Sources. 2019; 443:227108. https://doi.org/10.1016/j.jpowsour.2019.227108
- 84Fathoni G, Widayat SA, Topan PA, Jalil A, Cahyadi AI, Wahyunggoro O. Comparison of state-of-charge (SOC) estimation performance based on three popular methods: coulomb counting, open circuit voltage, and Kalman filter. Paper presented at: Proc. 2nd Int. Conf. Autom. Cogn. Sci. Opt. Micro Electro-Mechanical Syst. Inf. Technol. ICACOMIT 2017, 2018. 70–74, 2017. https://doi.org/10.1109/ICACOMIT.2017.8253389
10.1109/ICACOMIT.2017.8253389 Google Scholar
- 85Premkumar M, Mohan Kumar R, Karthick K, Sowmya R. SoC estimation and monitoring of li-ion cell using kalman-filter algorithm. Indones J Electr Eng Inform. 2018; 6(4): 418-427. https://doi.org/10.11591/ijeei.v6i1.548
10.11591/ijeei.v6i1.548 Google Scholar
- 86Asghar F, Talha M, Kim SH, Ra IH. Simulation study on battery state of charge estimation using Kalman filter. J Adv Comput Intell Intell Inform. 2016; 20(6): 861-866. https://doi.org/10.20965/jaciii.2016.p0861
- 87Wang W, Mu J. State of charge estimation for lithium-ion battery in electric vehicle based on Kalman filter considering model error. IEEE Access. 2019; 7:29223–29235. https://doi.org/10.1109/ACCESS.2019.2895377
- 88Plett GL. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - part 3. State and parameter estimation. J Power Sources. 2004; 134: 277-292. https://doi.org/10.1016/j.jpowsour.2004.02.033
- 89Taborelli C, Onori S. State of charge estimation using extended Kalman filters for battery management system. Paper presented at: 2014 IEEE Int. Electr Veh Conf IEVC 2014, 2014. https://doi.org/10.1109/IEVC.2014.7056126
10.1109/IEVC.2014.7056126 Google Scholar
- 90Li Z, Zhang P, Wang Z, Song Q, Rong Y. State of charge estimation for Li-ion battery based on extended Kalman filter. Energy Procedia. 2017; 105(4): 3515-3520. https://doi.org/10.1016/j.egypro.2017.03.806
10.1016/j.egypro.2017.03.806 Google Scholar
- 91Al-Gabalawy M, Hosny NS, Dawson JA, Omar AI. State of charge estimation of a Li-ion battery based on extended Kalman filtering and sensor bias. Int J Energy Res. 2020; 45: 1-19. https://doi.org/10.1002/er.6265
- 92He W, Williard N, Chen C, Pecht M. State of charge estimation for electric vehicle batteries using unscented kalman filtering. Microelectron Reliab. 2013; 53(6): 840-847. https://doi.org/10.1016/j.microrel.2012.11.010
- 93Santhanagopalan S, White RE. State of charge estimation using an unscented filter for high power lithium ion cells. Int J Energy Res. 2016; 34: 152-163.
- 94Zhang F, Liu G, Fang L. Battery state estimation using unscented kalman filter. Proc - IEEE Int Conf Robot Autom. 2009; 3: 1863-1868. https://doi.org/10.1109/ROBOT.2009.5152745
10.1109/ROBOT.2009.5152745 Google Scholar
- 95Peng N, Zhang S, Guo X, Zhang X. Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter. Int J Energy Res. 2021; 45(1): 975-990. https://doi.org/10.1002/ER.6088
- 96Chen X, Chen X, Chen X. A novel framework for lithium-ion battery state of charge estimation based on Kalman filter Gaussian process regression. Int J Energy Res. 2021; 45(9):13238–13249. https://doi.org/10.1002/ER.6649
- 97Lim KC, Bastawrous HA, Duong VH, See KW, Zhang P, Dou SX. Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles. Appl Energy. 2016; 169: 40-48. https://doi.org/10.1016/j.apenergy.2016.01.096
- 98Yang Y, Cui N, Wang C, Liu M, Gao R. SOC estimation of lithium-ion battery based on new adaptive fading extended Kalman filter. Paper presented at: Proc. - 2017 Chinese Autom. Congr. CAC 2017. 2017, ICCSEE, pp. 5630–5634, 2017. https://doi.org/10.1109/CAC.2017.8243786
10.1109/CAC.2017.8243786 Google Scholar
- 99Peng J, Luo J, He H, Lu B. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries. Appl Energy. 2019; 253:113520. https://doi.org/10.1016/j.apenergy.2019.113520
- 100Cui X, He Z, Li E, Cheng A, Luo M, Guo Y. State-of-charge estimation of power lithium-ion batteries based on an embedded micro control unit using a square root cubature Kalman filter at various ambient. Int J Energy Res. 2019; 43(8): 1-51. https://doi.org/10.1002/er.4503
- 101Shen J, Xiong J, Shu X, et al. State of charge estimation framework for lithium-ion batteries based on square root cubature Kalman filter under wide operation temperature range. Int J Energy Res. 2021; 45(4): 5586-5601. https://doi.org/10.1002/ER.6186
- 102Xiong R, Yu Q, Wang LY, Lin C. A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter. Appl Energy. 2017; 207: 346-353. https://doi.org/10.1016/j.apenergy.2017.05.136
- 103Xue L, Jiuchun J, Caiping Z, Weige Z, Bingxiang S. Effects analysis of model parameters uncertainties on battery SOC estimation using H-infinity observer. Paper presented at: IEEE International Symposium on Industrial Electronics, 2014. https://doi.org/10.1109/ISIE.2014.6864862
10.1109/ISIE.2014.6864862 Google Scholar
- 104Pang H, Guo L, Wu L, Jin X. An enhanced temperature-dependent model and state-of-charge estimation for a Li-ion battery using extended Kalman filter. Int J Energy Res. 2020; 44: 1-14. https://doi.org/10.1002/er.5435
- 105Yang J, Xia B, Shang Y, Huang W, Mi CC. Adaptive state-of-charge estimation based on a split battery model for electric vehicle applications. IEEE Trans Veh Technol. 2017; 66(12):10889–10898. https://doi.org/10.1109/TVT.2017.2728806
- 106Meng J, Luo G, Gao F. Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman Filter and support vector machine. IEEE Trans Power Electron. 2016; 31: 2226-2238. https://doi.org/10.1109/TPEL.2015.2439578
- 107Peng S, Chen C, Shi H, Yao Z. State of charge estimation of battery energy storage systems based on adaptive unscented Kalman filter with a noise statistics estimator. IEEE Access. 2017; 5:13202–13212. https://doi.org/10.1109/ACCESS.2017.2725301
- 108Peng S, Zhu X, Xing Y, Shi H, Cai X, Pecht M. An adaptive state of charge estimation approach for lithium-ion series- connected battery system. J Power Sources. 2018; 392(1): 48-59. https://doi.org/10.1016/j.jpowsour.2018.04.101
- 109Dineva A, Csomós B, Kocsis S, Vajda I. Investigation of the performance of direct forecasting strategy using machine learning in state-of-charge prediction of Li-ion batteries exposed to dynamic loads. J Energy Storage. 2021; 36: 1-16.
- 110Ng M-F, Zhao J, Yan Q, Conduit GJ, Seh ZW. Predicting the state of charge and health of batteries using data-driven machine learning. Nat Mach Intell. 2020; 2(3): 161-170. https://doi.org/10.1038/s42256-020-0156-7
10.1038/s42256-020-0156-7 Google Scholar
- 111Singh P, Vinjamuri R, Wang X, Reisner D. Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators. J Power Sources. 2006; 162: 829-836. https://doi.org/10.1016/j.jpowsour.2005.04.039
- 112Avadhanula AK, Kulkarni SS. Comparative study of mathematical models and data driven models for battery performance parameter estimation. Paper presented at: Proc. 2020 3rd Int. Conf. Adv. Electron. Comput. Commun. ICAECC 2020, pp. 4–8, 2020. https://doi.org/10.1109/ICAECC50550.2020.9339480
10.1109/ICAECC50550.2020.9339480 Google Scholar
- 113Lyu C, Han Y, Guo Q, Wang L, Song Y. State-of-Charge Estimation of Lithium-ion Batteries Based on Deep Neural Network. Paper presented at: 2020 Global reliability and prognostics and health management, PHM-Shanghai 2020, 2020. https://doi.org/10.1109/PHM-Shanghai49105.2020.9280940
10.1109/PHM-Shanghai49105.2020.9280940 Google Scholar
- 114Alvarez Anton JC, Garcia Nieto PJ, Blanco Viejo C, Vilan Vilan JA. Support vector machines used to estimate the battery state of charge. IEEE Trans Power Electron. 2013; 28(12): 5919-5926. https://doi.org/10.1109/TPEL.2013.2243918
- 115Hu X, Li SE, Yang Y. Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans Transp Electrif. 2016; 2(2): 140-149. https://doi.org/10.1109/TTE.2015.2512237
- 116Shen WX, Chan CC, Lo EWC, Chau KT. Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles. IEEE Trans Ind Electron. 2002; 49(3): 677-684. https://doi.org/10.1109/TIE.2002.1005395
- 117Singh KV, Bansal HO, Singh D. Hardware-in-the-loop implementation of ANFIS based adaptive SoC estimation of Lithium-ion battery for hybrid vehicle applications. J Energy Storage. 2020; 27:101124. https://doi.org/10.1016/j.est.2019.101124
- 118Zahid T, Xu K, Li W, Li C, Li H. State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles. Energy. 2018; 162: 871-882. https://doi.org/10.1016/j.energy.2018.08.071
- 119Charkhgard M, Farrokhi M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans Ind Electron. 2010; 57(12): 4178-4187. https://doi.org/10.1109/TIE.2010.2043035
- 120Zou Y, Hu X, Ma H, Li SE. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J Power Sources. 2015; 273: 793-803. https://doi.org/10.1016/j.jpowsour.2014.09.146
- 121Song Y, Liu D, Liao H, Peng Y. A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries. Appl Energy. 2020; 261:114408. https://doi.org/10.1016/j.apenergy.2019.114408
- 122Li J, Ye M, Gao K, Xu X, Wei M, Jiao S. Joint estimation of state of charge and state of health for lithium-ion battery based on dual adaptive extended Kalman filter. Int J Energy Res. 2021; 45(9):13307–13322. https://doi.org/10.1002/ER.6658
- 123Xie J. Available power prediction limited by multiple constraints for LiFePO 4 batteries based on central difference Kalman filter. Int J Energy Res. 2018; 42: 4730-4745. https://doi.org/10.1002/er.4227
- 124Zhang Y, Xiong R, He H, Shen W. Lithium-ion battery pack state of charge and state of energy estimation algorithms using a hardware-in-the-loop validation. IEEE Trans Power Electron. 2017; 32: 4421-4431. https://doi.org/10.1109/TPEL.2016.2603229
- 125Xie J, Ma J, Chen J. Available power prediction limited by multiple constraints for LiFePO4 batteries based on central difference Kalman filter. Int J Energy Res. 2018; 42(15): 4730-4745. https://doi.org/10.1002/ER.4227
- 126Hu X, Xiong R, Egardt B. Model-based dynamic power assessment of lithium-ion batteries considering different operating conditions. IEEE Trans Ind Inform. 2014; 10(3): 1948-1959. https://doi.org/10.1109/TII.2013.2284713
- 127Xiong R, Sun F, He H, Nguyen TD. A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy. 2013; 63: 295-308. https://doi.org/10.1016/j.energy.2013.10.027
- 128Verma MKS, Basu S, Patil RS, et al. On-board state estimation in electrical vehicles: achieving accuracy and computational efficiency through an electrochemical model. IEEE Trans Veh Technol. 2020; 69(3): 2563-2575. https://doi.org/10.1109/TVT.2020.2966266
- 129Weng C, Sun J, Peng H. An open-circuit-voltage model of lithium-ion batteries for effective incremental capacity analysis. Paper presented at: ASME 2013 Dyn. Syst. Control Conf. DSCC 2013, 1, pp. 1–8, 2013. https://doi.org/10.1115/DSCC2013-3979
10.1115/DSCC2013-3979 Google Scholar
- 130Barai A, Widanage WD, Marco J, Mcgordon A, Jennings P. A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells. J Power Sources. 2015; 295: 99-107. https://doi.org/10.1016/j.jpowsour.2015.06.140
- 131Zheng F, Xing Y, Jiang J, Sun B, Kim J, Pecht M. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Appl Energy. 2016; 183: 513-525. https://doi.org/10.1016/j.apenergy.2016.09.010
- 132Dong G, Wei J, Zhang C, Chen Z. Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method. Appl Energy. 2016; 162: 163-171. https://doi.org/10.1016/j.apenergy.2015.10.092
- 133Feng F, Lu R, Zhu C. A combined state of charge estimation method for lithium-ion batteries used in a wide ambient temperature range. Energies. 2014; 7: 3004-3032. https://doi.org/10.3390/en7053004
- 134Xie S, Xiong R, Zhang Y, He H. The estimation of state of charge for power battery packs used in hybrid electric vehicle. Energy Procedia. 2017; 105: 2678-2683. https://doi.org/10.1016/j.egypro.2017.03.774
10.1016/j.egypro.2017.03.774 Google Scholar
- 135Roscher MA, Bohlen OS, Sauer DU. Reliable state estimation of multicell Lithium-ion battery systems. IEEE Trans Energy Convers. 2011; 26(3): 737-743. https://doi.org/10.1109/TEC.2011.2155657
- 136Sun ZD, Wang S, Qin Y, Liu JG, Yan CW. Research of pulse current charge method for all vanadium redox battery. Adv Mater Res. 2014; 971–973: 1121-1124. https://doi.org/10.4028/www.scientific.net/AMR.971-973.1121
10.4028/www.scientific.net/AMR.971-973.1121 Google Scholar
- 137Ye M, Gong H, Xiong R, Mu H. Research on the battery charging strategy with charging and temperature rising control awareness. IEEE Access. 2018; 6:64193–64201. https://doi.org/10.1109/ACCESS.2018.2876359
- 138Pandžić H, Bobanac V. An accurate charging model of battery energy storage. IEEE Trans Power Syst. 2019; 34(2): 1416-1426. https://doi.org/10.1109/TPWRS.2018.2876466
- 139Liu K, Li K, Yang Z, Zhang C, Deng J. Battery optimal charging strategy based on a coupled thermoelectric model. Paper presented at: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, 2016. https://doi.org/10.1109/CEC.2016.7748334
10.1109/CEC.2016.7748334 Google Scholar
- 140Liu K, Li K, Yang Z, Zhang C, Deng J. An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model. Electrochim Acta. 2017; 225: 330-344. https://doi.org/10.1016/j.electacta.2016.12.129
- 141Liu K, Li K, Ma H, Zhang J, Peng Q. Multi-objective optimization of charging patterns for lithium-ion battery management. Energy Convers Manag. 2018; 159: 151-162. https://doi.org/10.1016/j.enconman.2017.12.092
- 142Chen Z, Shu X, Xiao R, Yan W, Liu Y, Shen J. Optimal charging strategy design for lithium-ion batteries considering minimization of temperature rise and energy loss. Int J Energy Res. 2019; 43(9): 4344-4358. https://doi.org/10.1002/ER.4560
- 143Lee CH, Chen MY, Hsu SH, Jiang JA. Implementation of an SOC-based four-stage constant current charger for Li-ion batteries. J Energy Storage. 2018; 18: 528-537. https://doi.org/10.1016/j.est.2018.06.010
- 144Liu YH, Teng JH, Lin YC. Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm. IEEE Trans Ind Electron. 2005; 52(5): 1328-1336. https://doi.org/10.1109/TIE.2005.855670
- 145Min H, Sun W, Li X, et al. Research on the optimal charging strategy for Li-ion batteries based on multi-objective optimization. Energies. 2017; 10(709): 1-15. https://doi.org/10.3390/en10050709
- 146Sun J, Ma Q, Liu R, Wang T, Tang C. A novel multiobjective charging optimization method of power lithium-ion batteries based on charging time and temperature rise. Int J Energy Res. 2019; 43(13): 7672-7681. https://doi.org/10.1002/ER.4727
- 147Li Y, Li K, Xie Y, Liu J, Fu C, Liu B. Optimized charging of lithium-ion battery for electric vehicles: adaptive multistage constant current–constant voltage charging strategy. Renew Energy. 2020; 146: 2688-2699. https://doi.org/10.1016/j.renene.2019.08.077
- 148Zhang C, Jiang J, Gao Y, Zhang W, Liu Q, Hu X. Charging optimization in lithium-ion batteries based on temperature rise and charge time. Appl Energy. 2017; 194: 569-577. https://doi.org/10.1016/j.apenergy.2016.10.059
- 149Li Y, Li K, Xie Y, et al. Optimization of charging strategy for lithium-ion battery packs based on complete battery pack model. J Energy Storage. 2021; 37:102466. https://doi.org/10.1016/J.EST.2021.102466
- 150Wu X, Shi W, Du J. Multi-objective optimal charging method for lithium-ion batteries. Energies. 2017; 10(9):1271. https://doi.org/10.3390/en10091271
- 151Liu K, Zou C, Li K, Wik T. Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model. IEEE Trans Ind Inform. 2018; 14(12): 5463-5474. https://doi.org/10.1109/TII.2018.2866493
- 152Liu J, Duan Q, Chen H, Sun J, Wang Q. An optimal multistage charge strategy for commercial lithium ion batteries. Sustain Energy Fuels. 2018; 2(8): 1726-1736. https://doi.org/10.1039/c8se00235e
- 153Wu X, Hu C, Du J, Sun J. Multistage CC-CV charge method for Li-ion battery. Math Probl Eng. 2015; 2015: 1-10. https://doi.org/10.1155/2015/294793
- 154Liu Y, Xu M, Xu Z, Wang X. A study of fast charging of Li-ion battery with pulsed current. Paper presented at: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2019. https://doi.org/10.1115/IMECE2019-10375
10.1115/IMECE2019-10375 Google Scholar
- 155Fang H, Depcik C, Lvovich V. Optimal pulse-modulated Lithium-ion battery charging: algorithms and simulation. J Energy Storage. 2018; 15: 359-367. https://doi.org/10.1016/j.est.2017.11.007
- 156Wang S-C, Chen G-J, Liu Y-H. Adaptive charging strategy with temperature rise mitigation and cycle life extension for Li-ion batteries. CPSS Trans Power Electron Appl. 2018; 3(3): 202-212. https://doi.org/10.24295/cpsstpea.2018.00020
10.24295/cpsstpea.2018.00020 Google Scholar
- 157Aliev RA, Aliev RA, Guirimov BG, Uyar K. Recurrent fuzzy neural network based system for battery charging. Paper presented at: International Symposium on Neural Networks, 2007, pp. 307–316.
- 158Petchjatuporn P, Khaehintung N, Sunat K, Sirisuk P, Kiranon W. Implementation of GA-trained GRNN for intelligent fast charger for Ni-cd batteries. Paper presented at: Conf. Proc. - IPEMC 2006 CES/IEEE 5th Int. Power Electron Motion Control Conf, 1, pp. 137–141, 2007. https://doi.org/10.1109/IPEMC.2006.297060
10.1109/IPEMC.2006.297060 Google Scholar
- 159Tian J, Xiong R, Shen W, Lu J, Yang XG. Deep neural network battery charging curve prediction using 30 points collected in 10 min. Joule. 2021; 5: 1521-1534. https://doi.org/10.1016/j.joule.2021.05.012
- 160Ullah Z, Burford B, Rahman S, Corporation NS, Clara S, Fuuy N. Fast intelligent battery charging: neural-fuzzy approach. IEEE Aerosp Electron Syst Mag. 1996; 11(6): 26-34. https://doi.org/10.1109/62.500207
- 161Liu CL, Chiu YS, Liu YH, Ho YH, Huang SS. Optimization of a fuzzy-logic-control-based five-stage battery charger using a fuzzy-based taguchi method. Energies. 2013; 6(7): 3528-3547. https://doi.org/10.3390/en6073528
- 162Park S, Pozzi A, Whitmeyer M, et al. Reinforcement learning-based fast charging control strategy for li-ion batteries. Paper presented at: CCTA 2020 - 4th IEEE Conf. Control Technol. Appl. pp. 100–107, 2020. https://doi.org/10.1109/CCTA41146.2020.9206314
10.1109/CCTA41146.2020.9206314 Google Scholar
- 163Suresh R, Rengaswamy R. Modeling and control of battery systems. Part II: a model predictive controller for optimal charging. Comput Chem Eng. 2018; 119: 326-335. https://doi.org/10.1016/j.compchemeng.2018.08.017
- 164Patnaik L, Praneeth AVJS, Williamson SS. A closed-loop constant-temperature constant-voltage charging technique to reduce charge time of lithium-ion batteries. IEEE Trans Ind Electron. 2019; 66(2): 1059-1067. https://doi.org/10.1109/TIE.2018.2833038
- 165Attia PM, Grover A, Jin N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature. 2020; 578: 397-402. https://doi.org/10.1038/s41586-020-1994-5
- 166Shen P, Ouyang M, Lu L, Li J, Feng X. The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles. IEEE Trans Veh Technol. 2018; 67(1): 92-103. https://doi.org/10.1109/TVT.2017.2751613
- 167Baure G, Dubarry M. Synthetic vs. real driving cycles: a comparison of electric vehicle battery degradation. Batteries. 2019; 5(2):42. https://doi.org/10.3390/batteries5020042