Fuel cells as an advanced alternative energy source for the residential sector applications in Malaysia
Corresponding Author
Zulfirdaus Zakaria
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Correspondence
Zulfirdaus Zakaria, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorSiti Kartom Kamarudin
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Research Center for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorKhairul Anuar Abd Wahid
Mechanical Engineering Section, Malaysia France Institute, Universiti Kuala Lumpur, Bandar Baru Bangi, Malaysia
Search for more papers by this authorCorresponding Author
Zulfirdaus Zakaria
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Correspondence
Zulfirdaus Zakaria, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorSiti Kartom Kamarudin
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Research Center for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorKhairul Anuar Abd Wahid
Mechanical Engineering Section, Malaysia France Institute, Universiti Kuala Lumpur, Bandar Baru Bangi, Malaysia
Search for more papers by this authorSummary
The growth of the world's population has increased energy demand. Malaysia, as a developing country, also requires significant energy to drive economic development and address population demand. Malaysian conventional power generation system is highly dependent on natural gas, coal, and oil power systems that have had significant environmental impacts. This paper explores the energy status in Malaysia to highlight the advantages of fuel cells as an advanced alternative energy source. The discussion on energy status in Malaysia involves population situation, energy demand, energy sources, and energy policies. Then, the ability and type of fuel cells to provide this advanced alternative energy source in Malaysia are described. The prospects for introducing portable fuel cell devices and residential applications have been comprehensively described as the most relevant application for the residential sector to implement this technology in Malaysia.
Highlights
- A comprehensive review of fuel cell systems as a source of renewable energy for the residence sector in Malaysia is presented.
- The introduction of fuel cell-based portable devices and residential applications are the most relevant applications for the residence sector in Malaysia.
- The prospects for the introduction of fuel cells are discussed, including costs and maintenance, the plan and strategy, and the availability of a research center in Malaysia.
Open Research
DATA AVAILABILITY STATEMENT
Data openly available in a public repository that issues datasets with DOIs.
REFERENCES
- 1Limburg KE, Hughes RM, Jackson DC, Czech B. Human population increase, economic growth, and fish conservation: collision course or savvy stewardship? Fisheries. 2011; 36(1): 27-35.
- 2Zakaria Z, Kamarudin SK. Direct conversion technologies of methane to methanol: an overview. Renew Sust Energ Rev. 2016; 65: 250-261.
- 3Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012; 488(7411): 294.
- 4Asafu-Adjaye J. The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries. Energy Econ. 2000; 22(6): 615-625.
- 5Nelson D, Nehrir M, Wang C. Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems. Renew Energy. 2006; 31(10): 1641-1656.
- 6Zhang F, Cheng S, Pant D, Bogaert GV, Logan BE. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun. 2009; 11(11): 2177-2179.
- 7Akpodiogaga-a P, Odjugo O. General overview of climate change impacts in Nigeria. J Hum Ecol. 2010; 29(1): 47-55.
10.1080/09709274.2010.11906248 Google Scholar
- 8Voigt C. State responsibility for climate change damages. Nordic J Int Law. 2008; 77(1–2): 1-22.
10.1163/090273508X290672 Google Scholar
- 9Smith KR, Jerrett M, Anderson HR, et al. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. Lancet. 2009; 374(9707): 2091-2103.
- 10Karki KB. Greenhouse gases, global warming and glacier ice melt in Nepal. J Agric Environ. 2007; 8: 1-7.
10.3126/aej.v8i0.721 Google Scholar
- 11 I, I.W.G., Climate Change 2013-The Physical Science Basis: Summary for Policymakers. 2013: Intergovernmental Panel on Climate Change.
- 12Schou P. Polluting non-renewable resources and growth. Environ Resour Econ. 2000; 16(2): 211-227.
- 13Ali R, Daut I, Taib S. A review on existing and future energy sources for electrical power generation in Malaysia. Renew Sust Energ Rev. 2012; 16(6): 4047-4055.
- 14Shaari N, Zakaria Z, Kamarudin SK. The optimization performance of cross-linked sodium alginate polymer electrolyte bio-membranes in passive direct methanol/ethanol fuel cells. Int J Energy Res. 2019; 43: 8275-8285.
- 15Das V, Padmanaban S, Venkitusamy K, Selvamuthukumaran R, Blaabjerg F, Siano P. Recent advances and challenges of fuel cell based power system architectures and control–a review. Renew Sust Energ Rev. 2017; 73: 10-18.
- 16Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci. 2015; 72: 141-337.
- 17Dekel DR. Review of cell performance in anion exchange membrane fuel cells. J Power Sources. 2018; 375: 158-169.
- 18Ong H, Mahlia T, Masjuki H. A review on energy scenario and sustainable energy in Malaysia. Renew Sust Energ Rev. 2011; 15(1): 639-647.
- 19Oh TH, Hasanuzzaman M, Selvaraj J, Teo SC, Chua SC. Energy policy and alternative energy in Malaysia: issues and challenges for sustainable growth–An update. Renew Sust Energ Rev. 2018; 81: 3021-3031.
- 20Akhtar A, Asuhaimi A, Shaibon H, Lo KL. Development of Privatized Power Industry in Malaysia. 1996.
- 21Bujang A, Bern C, Brumm T. Summary of energy demand and renewable energy policies in Malaysia. Renew Sust Energ Rev. 2016; 53: 1459-1467.
- 22Chandran V, Sharma S, Madhavan K. Electricity consumption–growth nexus: the case of Malaysia. Energy Policy. 2010; 38(1): 606-612.
- 23 Malaysia, D.O.S. Press release current population estimates, Malaysia, 2017–2018. 2018. Department of Statistics Malaysia Kuala Lumpur, Malaysia.
- 24Bhattacharyya SC. Energy access programmes and sustainable development: a critical review and analysis. Energy Sustain Dev. 2012; 16(3): 260-271.
- 25Petinrin J, Shaaban M. Renewable energy for continuous energy sustainability in Malaysia. Renew Sust Energ Rev. 2015; 50: 967-981.
- 26Tan CS, Maragatham K, Leong Y. Electricity energy outlook in Malaysia. IOP Conf Ser Earth Environ Sci. 2013; 16:012126.
10.1088/1755-1315/16/1/012126 Google Scholar
- 27Shafie S, Mahlia TMI, Masjuki HH, Ahmad-Yazid A. A review on electricity generation based on biomass residue in Malaysia. Renew Sust Energ Rev. 2012; 16(8): 5879-5889.
- 28 Malaysia Energy Statistics Handbook 2018. Retrieved from https://meih.st.gov.my/documents/10620/c7e69704-6f80-40ae-a764-ad0acf4a844d. 2018.
- 29Tang CF, Tan EC. Exploring the nexus of electricity consumption, economic growth, energy prices and technology innovation in Malaysia. Appl Energy. 2013; 104: 297-305.
- 30Demand AE, Outlook S. Projections to 2030. Economy Review. 2006.
- 31Tiraieyari N, Hamzah A, Samah BA. Chapter 8 organic farming and sustainable agriculture in Malaysia: organic farmers' challenges towards adoption. Sustainable Development of Organic Agriculture: Historical Perspectives. Boca Raton, FL: CRC Press; 2017: 135.
10.1201/9781315365800-9 Google Scholar
- 32Saari MY, Dietzenbacher E, Los B. The impacts of petroleum price fluctuations on income distribution across ethnic groups in Malaysia. Ecol Econ. 2016; 130: 25-36.
- 33Krishnan A. Petroleum development in Malaysia. J Malaysian Comp Law. 2019; 13: 133-178.
- 34Shafie SM, Mahlia TMI, Masjuki HH, Andriyana A. Current energy usage and sustainable energy in Malaysia: a review. Renew Sust Energ Rev. 2011; 15(9): 4370-4377.
- 35Jaafar MZ, Kheng WH, Kamaruddin N. Greener energy solutions for a sustainable future: issues and challenges for Malaysia. Energy Policy. 2003; 31(11): 1061-1072.
- 36Sulaiman F, Abdullah N, Gerhauser H, Shariff A. An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources. Biomass Bioenergy. 2011; 35(9): 3775-3786.
- 37Basri NA, Ramli AT, Aliyu AS. Malaysia energy strategy towards sustainability: a panoramic overview of the benefits and challenges. Renew Sust Energ Rev. 2015; 42: 1094-1105.
- 38Sovacool BK, Bulan L. Energy security and hydropower development in Malaysia: the drivers and challenges facing the Sarawak corridor of renewable energy (SCORE). Renew Energy. 2012; 40(1): 113-129.
- 39Chong C, Ni W, Ma L, Liu P, Li Z. The use of energy in Malaysia: tracing energy flows from primary source to end use. Energies. 2015; 8(4): 2828-2866.
- 40Low ST, Mohammed AH, Choong WW, Alias B. Facilities management: paths of Malaysia to achieve energy sustainability. Int J Facil Manag. 2010; 1(2): 1-10.
- 41Joshi D. Evaluating the Performance of the Sustainable Energy Development Authority (SEDA) and Renewable Energy Policy in Malaysia. Penang Institute: Pulau Pinang, Malaysia. 2018.
- 42Khor CS, Lalchand G. A review on sustainable power generation in Malaysia to 2030: historical perspective, current assessment, and future strategies. Renew Sust Energ Rev. 2014; 29: 952-960.
- 43Abdullah L, Najib L. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia. Int J Sustain Energy. 2016; 35(4): 360-377.
- 44Ho L-W. Wind energy in Malaysia: past, present and future. Renew Sust Energ Rev. 2016; 53: 279-295.
- 45Sadhukhan J, Martinez-Hernandez E, Murphy RJ, et al. Role of bioenergy, biorefinery and bioeconomy in sustainable development: strategic pathways for Malaysia. Renew Sust Energ Rev. 2018; 81: 1966-1987.
- 46Dicks A, Rand DAJ. Fuel Cell Systems Explained. Hoboken, NJ: Wiley Online Library; 2018.
10.1002/9781118706992 Google Scholar
- 47Sandstede G, Cairns EJ, Bagotsky VS, Wiesener K. History of low temperature fuel cells. Handbook of Fuel Cells. Hoboken, NJ: Wiley Online Library; 2010.
10.1002/9780470974001.f104011 Google Scholar
- 48Mignon I, Bergek A. System-and actor-level challenges for diffusion of renewable electricity technologies: an international comparison. J Clean Prod. 2016; 128: 105-115.
- 49Harborne P, Hendry C, Brown J. The development and diffusion of radical technological innovation: the role of bus demonstration projects in commercializing fuel cell technology. Tech Anal Strat Manag. 2007; 19(2): 167-188.
- 50Andrews J, Shabani B. The role of hydrogen in a global sustainable energy strategy. Wiley Interdiscip Rev Energy Environ. 2014; 3(5): 474-489.
- 51Dincer I. Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res. 2007; 31(1): 29-55.
- 52Li M, Liu Y, Dong L, et al. Recent advances on photocatalytic fuel cell for environmental applications—the marriage of photocatalysis and fuel cells. Sci Total Environ. 2019; 668: 966-978.
- 53Quasem Al-Amin A, Siwar C, Hamid Jaafar A. Energy use and environmental impact of new alternative fuel mix in electricity generation in Malaysia. The Open Renew Energy J. 2009; 2(1): 25-32.
10.2174/1876387100902010025 Google Scholar
- 54Peverelle F. Developing a Fuel Cell Industry in South Africa: a Triple-Helix Analysis. 2018.
- 55Zhang X. Current status of stationary fuel cells for coal power generation. Clean Energy. 2018; 2(2): 126-139.
10.1093/ce/zky012 Google Scholar
- 56Mekhilef S, Saidur R, Safari A. Comparative study of different fuel cell technologies. Renew Sust Energ Rev. 2012; 16(1): 981-989.
- 57Sisworahardjo N, El-sharkh M, Alam M. Neural network model of 100 W portable PEM fuel cell and experimental verification. Int J Hydrog Energy. 2010; 35(17): 9104-9109.
- 58Boran A, Erkan S, Eroglu I. Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications. Int J Hydrog Energy. 2019; 44(34): 18915-18926.
- 59Sohani A, Naderi S, Torabi F, et al. Application based multi-objective performance optimization of a proton exchange membrane fuel cell. J Clean Prod. 2020; 252:119567.
- 60Rosli R, Sulong AB, Daud WRW, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int J Hydrog Energy. 2017; 42(14): 9293-9314.
- 61Zhang H, Shen PK. Recent development of polymer electrolyte membranes for fuel cells. Chem Rev. 2012; 112(5): 2780-2832.
- 62Radenahmad N, Afif A, Petra PI, Rahman SMH, Eriksson SG, Azad AK. Proton-conducting electrolytes for direct methanol and direct urea fuel cells–a state-of-the-art review. Renew Sust Energ Rev. 2016; 57: 1347-1358.
- 63Ong B, Kamarudin SK, Basri S. Direct liquid fuel cells: a review. Int J Hydrog Energy. 2017; 42(15): 10142-10157.
- 64Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi AG. Advances in stationary and portable fuel cell applications. Int J Hydrog Energy. 2016; 41(37): 16509-16522.
- 65Kamarudin SK, Achmad F, Daud WRW. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrog Energy. 2009; 34(16): 6902-6916.
- 66Haskul M, Ülgen AT, Döner A. Fabrication and characterization of Ni modified TiO2 electrode as anode material for direct methanol fuel cell. Int J Hydrog Energy. 2020; 45: 4860-4874.
- 67Zhang J, Zhang L, Liu H, Sun A, Liu R-S. Electrochemical Technologies for Energy Storage and Conversion. Hoboken, NJ: John Wiley & Sons; 2012.
10.1002/9783527639496.ch7 Google Scholar
- 68Revankar ST, Majumdar P. Fuel Cells: Principles, Design, and Analysis. Boca Raton, FL: CRC Press; 2016.
10.1201/b15965 Google Scholar
- 69Zakaria Z, Kamarudin SK, Timmiati SN, Masdar MS. New composite membrane poly (vinyl alcohol)/graphene oxide for direct ethanol–proton exchange membrane fuel cell. J Appl Polym Sci. 2019; 136(2):46928.
- 70Zakaria Z, Kamarudin SK, Timmiati S. Influence of graphene oxide on the ethanol permeability and ionic conductivity of QPVA-based membrane in passive alkaline direct ethanol fuel cells. Nanoscale Res Lett. 2019; 14(1): 28.
- 71Song S, Tsiakaras P. Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal B Environ. 2006; 63(3–4): 187-193.
- 72Zakaria Z, Kamarudin SK, Timmiati S. Membranes for direct ethanol fuel cells: an overview. Appl Energy. 2016; 163: 334-342.
- 73Akhairi M, Kamarudin SK. Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrog Energy. 2016; 41(7): 4214-4228.
- 74Mat ZA, Nadaraja SK, Zakaria Z, et al. Fabrication and characterization of YSZ/ScSZ bilayer electrolyte for intermediate temperature-solid oxide fuel cell (IT-SOFC) application. Int J Integr Eng. 2019; 11(7): 201-208.
- 75Zakaria Z, Hassan SHA, Shaari N, Yahaya AZ, Kar YB. A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. Int J Energy Res. 2019; 44: 631-650.
- 76Brandon N, Shearing PR. Solid Oxide Fuel Cells: from Materials to System Modeling. Piccadilly, England: Royal Society of Chemistry; 2013.
- 77Fong K, Lee C. System analysis and appraisal of SOFC-primed micro cogeneration for residential application in subtropical region. Energ Buildings. 2016; 128: 819-826.
- 78Wu J, Liu X. Recent development of SOFC metallic interconnect. J Mater Sci Technol. 2010; 26(4): 293-305.
- 79Nielsen J, Hjelm J. Impedance of SOFC electrodes: a review and a comprehensive case study on the impedance of LSM: YSZ cathodes. Electrochim Acta. 2014; 115: 31-45.
- 80Kan H, Lee H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. Appl Catal B Environ. 2010; 97(1–2): 108-114.
- 81Hossain S, Abdalla AM, Jamain SNB, Zaini JH, Azad AK. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sust Energ Rev. 2017; 79: 750-764.
- 82Antolini E. The stability of molten carbonate fuel cell electrodes: a review of recent improvements. Appl Energy. 2011; 88(12): 4274-4293.
- 83Kulkarni A, Giddey S. Materials issues and recent developments in molten carbonate fuel cells. J Solid State Electrochem. 2012; 16(10): 3123-3146.
- 84Wee J-H. Carbon dioxide emission reduction using molten carbonate fuel cell systems. Renew Sust Energ Rev. 2014; 32: 178-191.
- 85Jeong H, Cho S, Kim D, et al. A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kw mcfc power plant. Int J Hydrog Energy. 2012; 37(15): 11394-11400.
- 86Chen X, Wang Y, Cai L, Zhou Y. Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system. J Power Sources. 2015; 294: 430-436.
- 87Aindow T, Haug A, Jayne D. Platinum catalyst degradation in phosphoric acid fuel cells for stationary applications. J Power Sources. 2011; 196(10): 4506-4514.
- 88Lau KY, Yousof MFM, Arshad SNM, Anwari M, Yatim AHM. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy. 2010; 35(8): 3245-3255.
- 89Isa NM, Das HS, Tan CW, Yatim AHM, Lau KY. A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital. Energy. 2016; 112: 75-90.
- 90Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci. 2011; 377(1–2): 1-35.
- 91Sapkota P, Boyer C, Dutta R, Cazorla C, Aguey-Zinsou K-F. Planar polymer electrolyte membrane fuel cells: powering portable devices from hydrogen. Sustain Energy Fuels. 2020; 4: 439-468.
- 92Luo X, Wang J, Dooner M, Clarke J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy. 2015; 137: 511-536.
- 93Cowey K, Green KJ, Mepsted GO, Reeve R. Portable and military fuel cells. Curr Opin Solid State Mater Sci. 2004; 8(5): 367-371.
- 94Zakaria Z, Shaari N, Kamarudin SK. Preliminary study of alkaline direct ethanol fuel cell by using crosslinked quaternized poly (vinyl alcohol)/graphene oxide membrane. J Kejuruteraan. 2018; 30(2): 219-227.
- 95Yuan W, Tang Y, Yang X, Wan Z. Porous metal materials for polymer electrolyte membrane fuel cells–a review. Appl Energy. 2012; 94: 309-329.
- 96Ebrahimi M, Derakhshan E. Design and evaluation of a micro combined cooling, heating, and power system based on polymer exchange membrane fuel cell and thermoelectric cooler. Energy Convers Manag. 2018; 171: 507-517.
- 97Fadzillah D, Kamarudin SK, Zainoodin MA, Masdar MS. Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: an overview. Int J Hydrog Energy. 2019; 44: 3031-3054.
- 98Pandey J. Recent progresses in membranes for proton exchange membrane fuel cell (PEMFC) for clean and environmentally friendly applications. Nanotechnology Applications in Environmental Engineering. Pennsylvania, PA: IGI Global; 2019: 308-343.
10.4018/978-1-5225-5745-6.ch013 Google Scholar
- 99Souahlia A, Dhaou H, Askri F, Sofiene M, Jemni A, Ben Nasrallah S. Experimental and comparative study of metal hydride hydrogen tanks. Int J Hydrog Energy. 2011; 36(20): 12918-12922.
- 100Giddey S, Badwal S, Fini D. A novel design of bipolar interconnect plate for self-air breathing micro fuel cells and degradation issues. Int J Hydrog Energy. 2012; 37(15): 11431-11447.
- 101Fernández-Moreno J, Guelbenzu G, Martín AJ, Folgado MA, Ferreira-Aparicio P, Chaparro AM. A portable system powered with hydrogen and one single air-breathing PEM fuel cell. Appl Energy. 2013; 109: 60-66.
- 102Mehmood A, Scibioh MA, Prabhuram J, An MG, Ha HY. A review on durability issues and restoration techniques in long-term operations of direct methanol fuel cells. J Power Sources. 2015; 297: 224-241.
- 103Kamarudin SK, Daud WRW, Ho SL, Hasran UA. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J Power Sources. 2007; 163(2): 743-754.
- 104Basri S, Kamarudin SK, Daud WRW, Yaakub Z. Nanocatalyst for direct methanol fuel cell (DMFC). Int J Hydrog Energy. 2010; 35(15): 7957-7970.
- 105Wee J-H. A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries. J Power Sources. 2007; 173(1): 424-436.
- 106Badwal S, Giddey S, Kulkarni A, Goel J, Basu S. Direct ethanol fuel cells for transport and stationary applications–a comprehensive review. Appl Energy. 2015; 145: 80-103.
- 107 NDCPower is pleased to announce our latest breakthrough technology - the EOS Direct Ethanol Fuel Cell.
- 108Zakaria Z, Mat ZA, Hassan SHA, Ka YB. A review of solid oxide fuel cell component fabrication methods toward lowering temperature. Int J Energy Res. 2019; 44: 594-611.
- 109Kumarana S, Mat ZA, Zakaria Z, Hassan SHA, Kar YB. A review on solid oxide fuel cell stack designs for intermediate temperatures. J Kejuruteraan. 2020; 32(1): 149-158.
- 110Jamil SM, Othman MHD, Rahman MA, Jaafar J, Ismail AF, Li K. Recent fabrication techniques for micro-tubular solid oxide fuel cell support: a review. J Eur Ceram Soc. 2015; 35(1): 1-22.
- 111Morales M, Navarro ME, Capdevila XG, Roa JJ, Segarra M. Processing of graded anode-supported micro-tubular SOFCs based on samaria-doped ceria via gel-casting and spray-coating. Ceram Int. 2012; 38(5): 3713-3722.
- 112Garbayo I, Pla D, Morata A, Fonseca L, Sabaté N, Tarancón A. Full ceramic micro solid oxide fuel cells: towards more reliable MEMS power generators operating at high temperatures. Energy Environ Sci. 2014; 7(11): 3617-3629.
- 113Ki J, Kim D. Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process. J Power Sources. 2010; 195(10): 3186-3200.
- 114Li C-X, Yun L-L, Zhang Y, Li C-J, Guo L-J. Microstructure, performance and stability of Ni/Al2O3 cermet-supported SOFC operating with coal-based syngas produced using supercritical water. Int J Hydrog Energy. 2012; 37(17): 13001-13006.
- 115Torrell M, Morata A, Kayser P, Kendall M, Kendall K, Tarancón A. Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications. J Power Sources. 2015; 285: 439-448.
- 116Haneda T, Ono Y, Ikegami T, Akisawa A. Technological assessment of residential fuel cells using hydrogen supply systems for fuel cell vehicles. Int J Hydrog Energy. 2017; 42(42): 26377-26388.
- 117Aki H, Taniguchi Y, Tamura I, et al. Fuel cells and energy networks of electricity, heat, and hydrogen: a demonstration in hydrogen-fueled apartments. Int J Hydrog Energy. 2012; 37(2): 1204-1213.
- 118Wang Y, Shi Y, Ni M, Cai N. A micro tri-generation system based on direct flame fuel cells for residential applications. Int J Hydrog Energy. 2014; 39(11): 5996-6005.
- 119Hamada Y, Takeda K, Goto R, Kubota H. Hybrid utilization of renewable energy and fuel cells for residential energy systems. Energ Buildings. 2011; 43(12): 3680-3684.
- 120Takeguchi T, Yamanaka T, Asakura K, Muhamad EN, Uosaki K, Ueda W. Evidence of nonelectrochemical shift reaction on a CO-tolerant high-entropy state Pt–Ru anode catalyst for reliable and efficient residential fuel cell systems. J Am Chem Soc. 2012; 134(35): 14508-14512.
- 121Pade L-L, Schröder ST. Fuel cell based micro-combined heat and power under different policy frameworks–An economic analysis. Energy Convers Manag. 2013; 66: 295-303.
- 122Lavorante MJ, Gurevich Messina L, Franco JI, Bonelli P. Design of an integrated power system using a proton exchange membrane fuel cell. Int J Hydrog Energy. 2014; 39(16): 8631-8634.
- 123Gencoglu MT, Ural Z. Design of a PEM fuel cell system for residential application. Int J Hydrog Energy. 2009; 34(12): 5242-5248.
- 124 Home Sweet Fuel Cell Home. Retrieved from https://www.altenergymag.com/article/2008/06/home-sweet-fuel-cell-home/438/. 2008.
- 125Stolten D, Samsun RC, Garland N. Fuel Cells: Data, Facts, and Figures. Hoboken, NJ: John Wiley & Sons; 2016.
10.1002/9783527693924 Google Scholar
- 126Ozawa A, Kudoh Y. Performance of residential fuel-cell-combined heat and power systems for various household types in Japan. Int J Hydrog Energy. 2018; 43(32): 15412-15422.
- 127Staffell I. Stationary fuel cells–residential applications. Fuel Cells: Data, Facts, and Figures. Hoboken, NJ: Wiley; 2016.
10.1002/9783527693924.ch29 Google Scholar
- 128Aki H, Wakui T, Yokoyama R. Optimal management of fuel cells in a residential area by Integrated-Distributed Energy Management System (IDEMS). Paper presented at: 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). 2016. IEEE.
- 129Korsgaard AR, Nielsen MP, Kær SK. Part two: control of a novel HTPEM-based micro combined heat and power fuel cell system. Int J Hydrog Energy. 2008; 33(7): 1921-1931.
- 130Hawkes A, Staffell I, Brett D, Brandon N. Fuel cells for micro-combined heat and power generation. Energy Environ Sci. 2009; 2(7): 729-744.
- 131Staffell I, Hamilton IG, Green R, Brett DJL, Kelly N, Petinot R. 10 Fuel cell micro-CHP. Domestic Microgeneration: Renewable and Distributed Energy Technologies, Policies and Economics, 2015: 219.
- 132Töpler J, Lehmann J. Hydrogen and Fuel Cell. Midtown Manhattan, NY: Springer; 2016.
10.1007/978-3-662-44972-1 Google Scholar
- 133Longo S, Cellura M, Guarino F, Brunaccini G, Ferraro M. Life cycle energy and environmental impacts of a solid oxide fuel cell micro-CHP system for residential application. Sci Total Environ. 2019; 685: 59-73.
- 134Mcphail SJ. The yellow pages of SOFC technology. Int Status SOFC Deploy. 2017; 2017: 1-38.
- 135Adam A, Fraga ES, Brett DJ. Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration. Appl Energy. 2015; 138: 685-694.
- 136Pade L-L, Schröder ST, Münster M, et al. Policy schemes, operational strategies and system integration of residential co-generation fuel cells. Int J Hydrog Energy. 2013; 38(7): 3050-3063.
- 137Kveselis V, Dzenajavičienė EF, Masaitis S. Analysis of energy development sustainability: the example of the Lithuanian district heating sector. Energy Policy. 2017; 100: 227-236.
- 138Matsuzaki Y. Residential applications: ENE-FARM. Hydrogen Energy Engineering. Midtown Manhattan, NY: Springer; 2016: 477-482.
10.1007/978-4-431-56042-5_35 Google Scholar
- 139Staffell I, Green R. The cost of domestic fuel cell micro-CHP systems. Int J Hydrog Energy. 2013; 38(2): 1088-1102.
- 140Elmer T, Worall M, Wu S, Riffat SB. Fuel cell technology for domestic built environment applications: state of-the-art review. Renew Sust Energ Rev. 2015; 42: 913-931.
- 141Kandlikar SG, Lu Z. Thermal management issues in a PEMFC stack–a brief review of current status. Appl Therm Eng. 2009; 29(7): 1276-1280.
- 142Cozzolino R, Cicconardi SP, Galloni E, Minutillo M, Perna A. Theoretical and experimental investigations on thermal management of a PEMFC stack. Int J Hydrog Energy. 2011; 36(13): 8030-8037.
- 143Cruz Rojas A, Lopez Lopez G, Gomez-Aguilar J, Alvarado V, Sandoval Torres C. Control of the air supply subsystem in a PEMFC with balance of plant simulation. Sustainability. 2017; 9(1): 73.
- 144Sui S, Rasheed R, Li Q, Su Y, Riffat S. Technoeconomic modelling and environmental assessment of a modern PEMFC CHP system: a case study of an eco-house at university of Nottingham. Environ Sci Pollut Res. 2019; 26(29): 29883-29895.
- 145Lee Y, Yang C, Yang C, Park S, Park S. Optimization of operating conditions for a 10 kW SOFC system. Trans Korean Hydrogen New Energy Soc. 2016; 27(1): 49-62.
10.7316/KHNES.2016.27.1.049 Google Scholar
- 146Wang K, Liu Y, Fergus JW. Interactions between SOFC interconnect coating materials and chromia. J Am Ceram Soc. 2011; 94(12): 4490-4495.
- 147Fang Q, Blum L, Peters R, Peksen M, Batfalsky P, Stolten D. SOFC stack performance under high fuel utilization. Int J Hydrog Energy. 2015; 40(2): 1128-1136.
- 148Remick R Wheeler D. Molten carbonate and phosphoric acid stationary fuel cells: overview and gap analysis. 2010. National Renewable Energy Lab.(NREL), Golden, CO (United States).
- 149McPhail SJ. Status and challenges of molten carbonate fuel cells. Advances in Science and Technology. Zurich, Switzerland: Trans Tech Publ; 2010.
10.4028/www.scientific.net/AST.72.283 Google Scholar
- 150Campanari S, Chiesa P, Manzolini G, Bedogni S. Economic analysis of CO2 capture from natural gas combined cycles using molten carbonate fuel cells. Appl Energy. 2014; 130: 562-573.
- 151Kanuri SV, Motupally S. Phosphoric acid fuel cells for stationary applications. Fuel Cells. Midtown Manhattan, NY: Springer; 2013: 369-389.
10.1007/978-1-4614-5785-5_12 Google Scholar
- 152Kaltschmitt T, Deutschmann O. Fuel processing for fuel cells. Advances in Chemical Engineering. Amsterdam, Netherlands: Elsevier; 2012: 1-64.
- 153Ito H. Economic and environmental assessment of phosphoric acid fuel cell-based combined heat and power system for an apartment complex. Int J Hydrog Energy. 2017; 42(23): 15449-15463.
- 154Ramli Z, Kamarudin SK. Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review. Nanoscale Res Lett. 2018; 13(1): 410.
- 155Karim N, Rubinsin NJ, Burukan MAA, Kamarudin SK. Sustainable route of synthesis platinum nanoparticles using orange peel extract. Int J Green Energy. 2019; 16(15): 1518-1526.
- 156Karim N, Kamarudin SK. Novel heat-treated cobalt phthalocyanine/carbon-tungsten oxide nanowires (CoPc/C-W18O49) cathode catalyst for direct methanol fuel cell. J Electroanal Chem. 2017; 803: 19-29.
- 157Zakil FA, Kamarudin SK, Basri S. Modified Nafion membranes for direct alcohol fuel cells: an overview. Renew Sust Energ Rev. 2016; 65: 841-852.
- 158Ying Y, Kamarudin SK, Masdar M. Silica-related membranes in fuel cell applications: an overview. Int J Hydrog Energy. 2018; 43(33): 16068-16084.
- 159Shaari N, Kamarudin SK. Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: an overview. Int J Energy Res. 2019; 43(7): 2756-2794.
- 160You P, Kamarudin SK, Masdar M. Improved performance of sulfonated polyimide composite membranes with rice husk ash as a bio-filler for application in direct methanol fuel cells. Int J Hydrog Energy. 2019; 44(3): 1857-1866.
- 161Ijaodola O, El-Hassan Z, Ogungbemi E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy. 2019; 179: 246-267.
- 162Choi S, Yuk S, Lee DH, et al. Rugged catalyst layer supported on a Nafion fiber mat for enhancing mass transport of polymer electrolyte membrane fuel cells. Electrochim Acta. 2018; 268: 469-475.
- 163Ghenai C, Al-Ani I, Khalifeh F, Alamaari T, Hamid AK Design of solar PV/fuel cell/diesel generator energy system for Dubai Ferry. Paper presented at: 2019 Advances in Science and Engineering Technology International Conferences (ASET). 2019. IEEE
- 164Shaneb OA, Taylor PC. An evaluation of integrated fuel cell and energy storage systems for residential applications. Paper presented at: 2009 44th International Universities Power Engineering Conference (UPEC). 2009. IEEE.
- 165Lajunen A, Lipman T. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy. 2016; 106: 329-342.
- 166Chehab KM. Optimal mix of a solar, wind, and fuel cell hybrid residential system. 2018.
- 167Shi X, Pérez-Salcedo K, Hanif S, et al. Progress on the functionalization of carbon nanostructures for fuel cell electrocatalysts. Advanced Electrocatalysts for Low-Temperature Fuel Cells. Midtown Manhattan, NY: Springer; 2018: 215-234.
10.1007/978-3-319-99019-4_6 Google Scholar
- 168Alonso-Vante N. Fuel cell electrocatalysis. Chalcogenide Materials for Energy Conversion. Midtown Manhattan, NY: Springer; 2018: 27-60.
10.1007/978-3-319-89612-0_2 Google Scholar
- 169Eguchi S. ENE• FARM fuel cell systems for residential use. Int Gas Union Magaz. 2009; 9: 186-217.
- 170Gong X, Wu N, Li C, Liang M, Akashi Y. Energy performance and CO2 emissions of fuel cells for residential application in Chinese hot summer and cold winter areas. IOP Conf Ser Earth Environ Sci. 2019; 310:022057.
10.1088/1755-1315/310/2/022057 Google Scholar
- 171Entchev E, Yang L. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation. J Power Sources. 2007; 170(1): 122-129.
- 172Nagasawa K, Rhodes JD, Webber ME. Assessment of primary energy consumption, carbon dioxide emissions, and peak electric load for a residential fuel cell using empirical natural gas and electricity use profiles. Energ Buildings. 2018; 178: 242-253.
- 173Wang J, Wang H, Fan Y. Techno-economic challenges of fuel cell commercialization. Engineering. 2018; 4(3): 352-360.
- 174Erdmann G. Future economics of the fuel cell housing market. Int J Hydrog Energy. 2003; 28(7): 685-694.
- 175Ambrose AF, Al-Amin AQ, Rasiah R, Saidur R, Amin N. Prospects for introducing hydrogen fuel cell vehicles in Malaysia. Int J Hydrog Energy. 2017; 42(14): 9125-9134.
- 176Das HS, Tan CW, Yatim AHM, Lau KY. Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renew Sust Energ Rev. 2017; 76: 1332-1347.
- 177Hasran UA, Jalil NFA, Din R, Daud WRW, Noor SFM. Pendidikan teknologi multidisiplin: mengenali sel fuel dengan pendekatan pembelajaran berasaskan permainan. Asian J Teach Learn High Educ. 2019; 11(2): 36-54.
- 178Liso V, Olesen AC, Nielsen MP, Kær SK. Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system. Energy. 2011; 36(7): 4216-4226.