Thermal behavior of lithium-ion battery in microgrid application: Impact and management system
Corresponding Author
Azri H. Hasani
URND Sdn Bhd, Universiti Tenaga Nasional, Kajang, Malaysia
Correspondence
Azri H. Hasani, URND Sdn Bhd, Universiti Tenaga Nasional, Kajang, Malaysia.
Email: [email protected]
Search for more papers by this authorMuhamad Mansor
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorVigna Kumaran
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorAhmad W. M. Zuhdi
Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorYong J. Ying
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorMahammad Abdul Hannan
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorFazrena A. Hamid
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorMuhamad S. A. Rahman
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorNur A. Salim
Faculty of Electrical Engineering, Universiti Teknologi MARA Shah Alam, Shah Alam, Malaysia
Search for more papers by this authorCorresponding Author
Azri H. Hasani
URND Sdn Bhd, Universiti Tenaga Nasional, Kajang, Malaysia
Correspondence
Azri H. Hasani, URND Sdn Bhd, Universiti Tenaga Nasional, Kajang, Malaysia.
Email: [email protected]
Search for more papers by this authorMuhamad Mansor
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorVigna Kumaran
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorAhmad W. M. Zuhdi
Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorYong J. Ying
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorMahammad Abdul Hannan
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorFazrena A. Hamid
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorMuhamad S. A. Rahman
Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorNur A. Salim
Faculty of Electrical Engineering, Universiti Teknologi MARA Shah Alam, Shah Alam, Malaysia
Search for more papers by this authorFunding information: Ministry of Education, Malaysia, Grant/Award Number: 20190102LRGS
Summary
Safe and reliable operation is among the considerations when integrating lithium-ion batteries as the energy storage system in microgrids. A lithium-ion battery is very sensitive to temperature in which it is one of the critical factors affecting the performance and limiting the practical application of the battery. Furthermore, the adverse effects differ according to the temperature. The susceptibility of lithium-ion battery to temperature imposes the need to deploy an efficient battery thermal management system to ensure the safe operation of the battery while at the same time maximizing its performance and life cycle. To design a good thermal management system, accurate temperature measurement is vital to assist the battery thermal management system in managing relevant states such as the stage-of-charge and state-of-health of the battery. This article outlines the effects of low and high temperatures on the performance of Li-ion batteries. Next, a review of currently available internal temperature monitoring approaches is presented based on their feasibility and complexity. Then, an overview of battery thermal management systems based on different cooling mediums is presented. This includes air cooling, liquid cooling, phase change material (PCM) cooling, heat pipe cooling, boiling-based cooling, and solid-state cooling. The final section of this article discusses the practical implementation of the internal temperature measurement approach and battery thermal management system for microgrids. From the review, a suitable candidate is the flexible, low maintenance, and long lifetime hybrid battery thermal management system that combines heat pipe cooling and solid-state cooling. It is capable of maintaining the maximum operating temperature of the battery within 45°C at up to 3C discharge rate while being a relatively simple system. Additionally, passive PCM with thermally conductive filler can also be employed to assist the hybrid battery thermal management system in improving the temperature uniformity well within 5°C.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study
REFERENCES
- 1Jiayi H, Chuanwen J, Rong X. A review on distributed energy resources and MicroGrid. Renewable and Sustainable Energy Reviews. 2008; 12(9): 2472-2483. https://doi.org/10.1016/j.rser.2007.06.004.
- 2Robert H, Lasseter PP. Microgrid: A Conceptual Solution. IEEE Power Electronics Specialists Conference. 60. Aachen, Germany: IEEE; 2004: 4285-4291. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.374.8193&rep=rep1&type=pdf. Accessed August 22, 2019. https://doi.org/10.1109/PESC.2004.1354758.
- 3Levron Y, Guerrero JM, Beck Y. Optimal power flow in microgrids with energy storage. IEEE Transactions on Power Apparatus and Systems. 2013; 28(3): 3226-3234. https://doi.org/10.1109/TPWRS.2013.2245925.
- 4Faisal M, Hannan MA, Ker PJ, Hussain A, Mansor MB, Blaabjerg F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access. 2018; 6: 35143-35164. https://doi.org/10.1109/ACCESS.2018.2841407.
- 5Cho J, Jeong S, Kim Y. Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science. 2015; 48: 84-101. https://doi.org/10.1016/j.pecs.2015.01.002.
- 6Luo X, Wang J, Dooner M, Clarke J, Krupke C. Overview of current development in compressed air energy storage technology. Energy Procedia. 2014; 62: 603-611. https://doi.org/10.1016/j.egypro.2014.12.423.
10.1016/j.egypro.2014.12.423 Google Scholar
- 7Amiryar M, Pullen K. A Review of Flywheel Energy Storage System Technologies and Their Applications. Applied Sciences. 2017; 7(3): 286. https://doi.org/10.3390/app7030286.
10.3390/app7030286 Google Scholar
- 8Habib HF, Mohamed AAS, El Hariri M, Mohammed OA. Utilizing supercapacitors for resiliency enhancements and adaptive microgrid protection against communication failures. Electric Power Systems Research. 2017; 145: 223-233. https://doi.org/10.1016/j.epsr.2016.12.027.
- 9Gong K, Shi J, Liu Y, Wang Z, Ren L, Zhang Y. Application of SMES in the Microgrid Based on Fuzzy Control. IEEE Transactions on Applied Superconductivity. 2016; 26(3): 1-5. https://doi.org/10.1109/TASC.2016.2524446.
- 10Niaz S, Manzoor T, Pandith AH. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews. 2015; 50: 457-469. https://doi.org/10.1016/j.rser.2015.05.011.
- 11Hemmati R, Saboori H. Emergence of hybrid energy storage systems in renewable energy and transport applications – A review. Renewable and Sustainable Energy Reviews. 2016; 65: 11-23. https://doi.org/10.1016/j.rser.2016.06.029.
- 12Divya KC, Østergaard J. Battery energy storage technology for power systems—An overview. Electric Power Systems Research. 2009; 79(4): 511-520. https://doi.org/10.1016/J.EPSR.2008.09.017.
- 13Luo X, Wang J, Dooner M, Clarke J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy. 2015; 137: 511-536. https://doi.org/10.1016/J.APENERGY.2014.09.081.
- 14Lukic SM, Cao J, Bansal RC, Rodriguez F, Emadi A. Energy storage systems for automotive applications. IEEE Transactions on Industrial Electronics. 2008; 55(6): 2258-2267. https://doi.org/10.1109/TIE.2008.918390.
- 15Parra D, Swierczynski M, Stroe DI, et al. An interdisciplinary review of energy storage for communities: Challenges and perspectives. Renewable and Sustainable Energy Reviews. 2017; 79: 730-749. https://doi.org/10.1016/j.rser.2017.05.003.
- 16Noack J, Roznyatovskaya N, Herr T, Fischer P. The Chemistry of Redox-Flow Batteries. Angewandte Chemie, International Edition. 2015; 54(34): 9776-9809. https://doi.org/10.1002/anie.201410823.
- 17Palizban O, Kauhaniemi K. Energy storage systems in modern grids—Matrix of technologies and applications. Journal of Energy Storage. 2016; 6: 248-259. https://doi.org/10.1016/j.est.2016.02.001.
- 18Zhang C, Wei Y-L, Cao P-F, Lin M-C. Energy storage system: Current studies on batteries and power condition system. Renewable and Sustainable Energy Reviews. 2018; 82: 3091-3106. https://doi.org/10.1016/J.RSER.2017.10.030.
- 19Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources. 2013; 226: 272-288. https://doi.org/10.1016/j.jpowsour.2012.10.060.
- 20Alaoui C. Thermal management for energy storage system for smart grid. Journal of Energy Storage. 2017; 13: 313-324. https://doi.org/10.1016/j.est.2017.07.027.
- 21Wood E, Alexander M, Bradley TH. Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles. Journal of Power Sources. 2011; 196(11): 5147-5154. https://doi.org/10.1016/j.jpowsour.2011.02.025.
- 22Stan A-I, Swierczynski M, Stroe D-I, Teodorescu R, Andreasen SJ, Moth K. A comparative study of lithium ion to lead acid batteries for use in UPS applications. 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC). Vancouver, BC: IEEE; 2014: 1-8. https://doi.org/10.1109/INTLEC.2014.6972152.
10.1109/INTLEC.2014.6972152 Google Scholar
- 23Pesaran A, Santhanagopalan S, Kim G-H. Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation). NREL (National Renewable Energy The Laboratory). 2013. https://www.nrel.gov/docs/fy13osti/58145.pdf. Accessed June 25, 2019.
- 24Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources. 2012; 208: 210-224. https://doi.org/10.1016/J.JPOWSOUR.2012.02.038.
- 25Al-Zareer M, Dincer I, Rosen MA. A review of novel thermal management systems for batteries. International Journal of Energy Research. 2018; 42(10): 3182-3205. https://doi.org/10.1002/er.4095.
- 26Van Gils RW, Danilov D, Notten PHL, Speetjens MFM, Nijmeijer H. Battery thermal management by boiling heat-transfer. Energy Conversion and Management. 2014; 79: 9-17. https://doi.org/10.1016/j.enconman.2013.12.006.
- 27Liu H, Wei Z, He W, Zhao J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management. 2017; 150: 304-330. https://doi.org/10.1016/J.ENCONMAN.2017.08.016.
- 28Wang Y, Gao Q, Wang G, Lu P, Zhao M, Bao W. A review on research status and key technologies of battery thermal management and its enhanced safety. International Journal of Energy Research. 2018; 42(13): 4008-4033. https://doi.org/10.1002/er.4158.
- 29Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Applied Thermal Engineering. 2019; 149: 192-212. https://doi.org/10.1016/j.applthermaleng.2018.12.020.
- 30Zhang SS, Xu K, Jow TR. The low temperature performance of Li-ion batteries. Journal of Power Sources. 2003; 115(1): 137-140. https://doi.org/10.1016/S0378-7753(02)00618-3.
- 31Yang S, Ling C, Fan Y, Yang Y, Tan X, Dong HA. Review of Lithium-Ion Battery Thermal Management System Strategies and the Evaluate Criteria. International Journal of Electrochemical Science. 2019; 14:6077-6107: 6077-6107. https://doi.org/10.20964/2019.07.06.
- 32Jaguemont J, Boulon L, Dube Y, Poudrier D. Low Temperature Discharge Cycle Tests for a Lithium Ion Cell. 2014 IEEE Vehicle Power and Propulsion Conference (VPPC). Coimbra, Portugal: IEEE; 2014: 1-6. https://doi.org/10.1109/VPPC.2014.7007097.
10.1109/VPPC.2014.7007097 Google Scholar
- 33Aris AM, Shabani B. An Experimental Study of a Lithium Ion Cell Operation at Low Temperature Conditions. Energy Procedia. 2017; 110: 128-135. https://doi.org/10.1016/J.EGYPRO.2017.03.117.
- 34Jaguemont J, Boulon L, Venet P, Dube Y, Sari A. Low temperature aging tests for lithium-ion batteries. 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE). Buzios, Brazil: IEEE; 2015: 1284-1289. https://doi.org/10.1109/ISIE.2015.7281657.
10.1109/ISIE.2015.7281657 Google Scholar
- 35Ma S, Jiang M, Tao P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International. 2018; 28(6): 653-666. https://doi.org/10.1016/j.pnsc.2018.11.002.
- 36Gao F, Tang Z. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochimica Acta. 2008; 53(15): 5071-5075. https://doi.org/10.1016/J.ELECTACTA.2007.10.069.
- 37Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt-Mehrens M. Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. Journal of Power Sources. 2014; 262: 129-135. https://doi.org/10.1016/J.JPOWSOUR.2014.03.112.
- 38Jaguemont J, Boulon L, Dubé Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy. 2016; 164: 99-114. https://doi.org/10.1016/J.APENERGY.2015.11.034.
- 39Petzl M, Kasper M, Danzer MA. Lithium plating in a commercial lithium-ion battery - A low-temperature aging study. Journal of Power Sources. 2015; 275: 799-807. https://doi.org/10.1016/j.jpowsour.2014.11.065.
- 40Safari M, Delacourt C. Aging of a commercial graphite/LiFePO4 cell. Journal of the Electrochemical Society. 2011; 158(10): A1123. https://doi.org/10.1149/1.3614529.
- 41Wu M-S, Liu KH, Wang Y-Y, Wan C-C. Heat dissipation design for lithium-ion batteries. Journal of Power Sources. 2002; 109(1): 160-166. https://doi.org/10.1016/S0378-7753(02)00048-4.
- 42Shim J, Kostecki R, Richardson T, Song X, Striebel K. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. Journal of Power Sources. 2002; 112(1): 222-230. https://doi.org/10.1016/S0378-7753(02)00363-4.
- 43Leng F, Tan CM, Pecht M. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Scientific Reports. 2015; 5: 12967. https://doi.org/10.1038/srep12967.
- 44Vetter J, Novák P, Wagner MR, et al. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources. 2005; 147(1–2): 269-281. https://doi.org/10.1016/j.jpowsour.2005.01.006.
- 45Ning G, Haran B, Popov BN. Capacity fade study of lithium-ion batteries cycled at high discharge rates. Journal of Power Sources. 2003; 117(1–2): 160-169. https://doi.org/10.1016/S0378-7753(03)00029-6.
- 46Keil P, Schuster SF, Wilhelm J, et al. Calendar Aging of Lithium-Ion Batteries. Journal of the Electrochemical Society. 2016; 163(9): A1872-A1880. https://doi.org/10.1149/2.0411609jes.
- 47Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, Zhang M. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. Journal of Power Sources. 2014; 255: 294–301. https://doi.org/10.1016/j.jpowsour.2014.01.005.
- 48Divakaran AM, Hamilton D, Manjunatha KN, Minakshi M. Design, Development and Thermal Analysis of Reusable Li-Ion Battery Module for Future Mobile and Stationary Applications. Energies. 2020; 13(6): 1477. https://doi.org/10.3390/en13061477.
- 49Zhang G, Cao L, Ge S, Wang CY, Shaffer CE, Rahn CD. In situ measurement of radial temperature distributions in cylindrical Li-ion cells. Journal of the Electrochemical Society. 2014; 161(10): A1499-A1507. https://doi.org/10.1149/2.0051410jes.
- 50Li B, Parekh MH, Adams RA, et al. Lithium-ion Battery Thermal Safety by Early Internal Detection, Prediction and Prevention. Scientific Reports. 2019; 9(1): 13255. https://doi.org/10.1038/s41598-019-49616-w.
- 51Finegan DP, Darcy E, Keyser M, et al. Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits. Energy & Environmental Science. 2017; 10(6): 1377-1388. https://doi.org/10.1039/c7ee00385d.
- 52Zhang G, Cao L, Ge S, Wang CY, Shaffer CE, Rahn CD. Reaction temperature sensing (RTS)-based control for Li-ion battery safety. Scientific Reports. 2015; 5: 18237. https://doi.org/10.1038/srep18237.
- 53Zhang M, Du J, Liu L, et al. Internal short circuit trigger method for lithium-ion battery based on shape memory alloy. Journal of the Electrochemical Society. 2017; 164(13): A3038-A3044. https://doi.org/10.1149/2.0731713jes.
- 54Li Z, Zhang J, Wu B, et al. Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples. Journal of Power Sources. 2013; 241: 536-553. https://doi.org/10.1016/J.JPOWSOUR.2013.04.117.
- 55Mutyala MSK, Zhao J, Li J, Pan H, Yuan C, Li X. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples. Journal of Power Sources. 2014; 260: 43-49. https://doi.org/10.1016/j.jpowsour.2014.03.004.
- 56Lee CY, Lee SJ, Tang MS, Chen PC. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors. Sensors. 2011; 11(10): 9942-9950. https://doi.org/10.3390/s111009942.
- 57Panchal S, Dincer I, Agelin-Chaab M, Fowler M, Fraser R. Uneven temperature and voltage distributions due to rapid discharge rates and different boundary conditions for series-connected LiFePO4 batteries. International Communications in Heat and Mass Transfer. 2017; 81: 210-217. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.026.
- 58Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions. International Communications in Heat and Mass Transfer. 2016; 71: 35-43. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.004.
- 59Grattan KTV, Meggit BT. In: KTV Grattan, BT Meggitt, eds. Optical Fiber Sensor Technology. Boston, MA: Springer; 1999. https://doi.org/10.1007/978-1-4757-6077-4.
- 60Novais S, Nascimento M, Grande L, et al. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors. Sensors. 2016; 16(9): 1394. https://doi.org/10.3390/s16091394.
- 61Nascimento M, Ferreira MS, Pinto JL. Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions. Applied Thermal Engineering. 2019; 149: 1236-1243. https://doi.org/10.1016/j.applthermaleng.2018.12.135.
- 62Zhu Y, Xie J, Pei A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nature Communications. 2019; 10(1): 1-7. https://doi.org/10.1038/s41467-019-09924-1.
- 63Wang P, Zhang X, Yang L, et al. Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process. Extreme Mechanics Letters. 2016; 9: 459-466. https://doi.org/10.1016/j.eml.2016.03.013.
- 64Anthony D, Wong D, Wetz D, Jain A. Non-invasive measurement of internal temperature of a cylindrical Li-ion cell during high-rate discharge. International Journal of Heat and Mass Transfer. 2017; 111: 223-231. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.095.
- 65Anthony D, Sarkar D, Jain A. Non-invasive, transient determination of the core temperature of a heat-generating solid body. Scientific Reports. 2016; 6. https://doi.org/10.1038/srep35886. 35886
- 66Zhang C, Li K, Deng J. Real-time estimation of battery internal temperature based on a simplified thermoelectric model. Journal of Power Sources. 2016; 302: 146-154. https://doi.org/10.1016/J.JPOWSOUR.2015.10.052.
- 67Richardson RR, Ireland PT, Howey DA. Battery internal temperature estimation by combined impedance and surface temperature measurement. Journal of Power Sources. 2014; 265: 254-261. https://doi.org/10.1016/j.jpowsour.2014.04.129.
- 68Zhu J, Sun Z, Wei X, Dai H. Battery Internal Temperature Estimation for LiFePO4 Battery Based on Impedance Phase Shift under Operating Conditions. Energies. 2017; 10(1): 60. https://doi.org/10.3390/en10010060.
- 69Bazinski SJ, Wang X. Predicting heat generation in a lithium-ion pouch cell through thermography and the lumped capacitance model. Journal of Power Sources. 2016; 305: 97-105. https://doi.org/10.1016/j.jpowsour.2015.11.083.
- 70Raijmakers LHJ, Danilov DL, Eichel RA, Notten PHL. A review on various temperature-indication methods for Li-ion batteries. Applied Energy. 2019; 240: 918-945. https://doi.org/10.1016/j.apenergy.2019.02.078.
- 71Javani N, Dincer I, Naterer GF. Numerical modeling of submodule heat transfer with phase change material for thermal management of electric vehicle battery packs. Journal of Thermal Science and Engineering Applications. 2015; 7(3): 031005. https://doi.org/10.1115/1.4029053.
- 72Alaoui C. Passive/active BTMS for EV lithium-ion batteries. IEEE Transactions on Vehicular Technology. 2018; 67(5): 3709-3719. https://doi.org/10.1109/TVT.2018.2791359.
- 73Lu Z, Meng XZ, Wei LC, Hu WY, Zhang LY, Jin LW. Thermal Management of Densely-packed EV Battery with Forced Air Cooling Strategies. Energy Procedia. 2016; 88: 682-688. https://doi.org/10.1016/J.EGYPRO.2016.06.098.
10.1016/j.egypro.2016.06.098 Google Scholar
- 74Hong S, Zhang X, Chen K, Wang S. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent. International Journal of Heat and Mass Transfer. 2018; 116: 1204-1212. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.092.
- 75Chen K, Wu W, Yuan F, Chen L, Wang S. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy. 2019; 167: 781-790. https://doi.org/10.1016/j.energy.2018.11.011.
- 76Xie J, Ge Z, Zang M, Wang S. Structural optimization of lithium-ion battery pack with forced air cooling system. Applied Thermal Engineering. 2017; 126: 583-593. https://doi.org/10.1016/J.APPLTHERMALENG.2017.07.143.
- 77Jiaqiang E, Yue M, Chen J, et al. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Applied Thermal Engineering. 2018; 144: 231-241. https://doi.org/10.1016/j.applthermaleng.2018.08.064.
- 78Shahid S, Agelin-Chaab M. Development and analysis of a technique to improve air-cooling and temperature uniformity in a battery pack for cylindrical batteries. Thermal Science and Engineering Progress. 2018; 5: 351-363. https://doi.org/10.1016/j.tsep.2018.01.003.
- 79Yang T, Yang N, Zhang X, Li G. Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack. International Journal of Thermal Sciences. 2016; 108: 132-144. https://doi.org/10.1016/j.ijthermalsci.2016.05.009.
- 80Wang T, Tseng KJ, Zhao J, Wei Z. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied Energy. 2014; 134: 229-238. https://doi.org/10.1016/J.APENERGY.2014.08.013.
- 81Yang N, Zhang X, Li G, Hua D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Applied Thermal Engineering. 2015; 80: 55-65. https://doi.org/10.1016/j.applthermaleng.2015.01.049.
- 82Xia G, Cao L, Bi G. A review on battery thermal management in electric vehicle application. Journal of Power Sources. 2017; 367: 90-105. https://doi.org/10.1016/J.JPOWSOUR.2017.09.046.
- 83Wang Q, Jiang B, Li B, Yan Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renewable and Sustainable Energy Reviews. 2016; 64: 106-128. https://doi.org/10.1016/j.rser.2016.05.033.
- 84Rao Z, Qian Z, Kuang Y, Li Y. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering. 2017; 123: 1514-1522. https://doi.org/10.1016/J.APPLTHERMALENG.2017.06.059.
- 85Wang Y, Zhang G, Yang X. Optimization of liquid cooling technology for cylindrical power battery module. Applied Thermal Engineering. 2019; 162: 114200. https://doi.org/10.1016/j.applthermaleng.2019.114200.
- 86Yates M, Akrami M, Javadi AA. Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries. Journal of Energy Storage. 2019; 100913. https://doi.org/10.1016/j.est.2019.100913.
- 87Zhao J, Rao Z, Li Y. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management. 2015; 103: 157-165. https://doi.org/10.1016/j.enconman.2015.06.056.
- 88Wang C, Zhang G, Meng L, et al. Liquid cooling based on thermal silica plate for battery thermal management system. International Journal of Energy Research. 2017; 41(15): 2468-2479. https://doi.org/10.1002/er.3801.
- 89Yang X-H, Tan S-C, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Conversion and Management. 2016; 117: 577-585. https://doi.org/10.1016/J.ENCONMAN.2016.03.054.
- 90Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Conversion and Management. 2019; 182: 262-281. https://doi.org/10.1016/j.enconman.2018.12.051.
- 91 Weston Arthur Hermann. Liquid cooling manifold with multi-function thermal interface. Google Patents US8263250B2. 2010. https://patents.google.com/patent/US8263250B2/en. Accessed October 7, 2020.
- 92Ping P, Peng R, Kong D, Chen G, Wen J. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment. Energy Conversion and Management. 2018; 176: 131-146. https://doi.org/10.1016/j.enconman.2018.09.025.
- 93Sun Z, Fan R, Yan F, Zhou T, Zheng N. Thermal management of the lithium-ion battery by the composite PCM-Fin structures. International Journal of Heat and Mass Transfer. 2019; 145: 118739. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118739.
- 94Chen Z, Gao D, Shi J. Experimental and numerical study on melting of phase change materials in metal foams at pore scale. International Journal of Heat and Mass Transfer. 2014; 72: 646-655. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.003.
- 95Zhang Z, Cheng J, He X. Numerical simulation of flow and heat transfer in composite PCM on the basis of two different models of open-cell metal foam skeletons. International Journal of Heat and Mass Transfer. 2017; 112: 959-971. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.012.
- 96Weng J, Yang X, Zhang G, Ouyang D, Chen M, Wang J. Optimization of the detailed factors in a phase-change-material module for battery thermal management. International Journal of Heat and Mass Transfer. 2019; 138: 126-134. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.050.
- 97Pereira da Cunha J, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials - A review. Applied Energy. 2016; 177: 227-238. https://doi.org/10.1016/j.apenergy.2016.05.097.
- 98Rao Z, Wang S. A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews. 2011; 15(9): 4554-4571. https://doi.org/10.1016/J.RSER.2011.07.096.
- 99Park S, Jang DS, Lee DC, Hong SH, Kim Y. Simulation on cooling performance characteristics of a refrigerant-cooled active thermal management system for lithium ion batteries. International Journal of Heat and Mass Transfer. 2019; 135: 131-141. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.109.
- 100Hirano H, Tajima T, Hasegawa T, Sekiguchi T, Uchino M. Boiling liquid battery cooling for electric vehicle. IEEE Transportation Electrification Conference and Expo, ITEC Asia-Pacific 2014. Beijing, China: Institute of Electrical and Electronics Engineers Inc; 2014; 1–4. https://doi.org/10.1109/ITEC-AP.2014.6940931.
10.1109/ITEC-AP.2014.6940931 Google Scholar
- 101Al-Zareer M, Dincer I, Rosen MA. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles. Journal of Power Sources. 2017; 363: 291-303. https://doi.org/10.1016/j.jpowsour.2017.07.067.
- 102Al-Zareer M, Dincer I, Rosen MA. Development and evaluation of a new ammonia boiling based battery thermal management system. Electrochimica Acta. 2018; 280: 340-352. https://doi.org/10.1016/j.electacta.2018.05.093.
- 103Wang YF, Wu JT. Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles. Energy Conversion and Management. 2020; 207: 112569. https://doi.org/10.1016/j.enconman.2020.112569.
- 104Lin Z, Wang S, Huo J, et al. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes. Applied Thermal Engineering. 2011; 31(14–15): 2221-2229. https://doi.org/10.1016/j.applthermaleng.2011.03.003.
- 105Greco A, Cao D, Jiang X, Yang H. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes. Journal of Power Sources. 2014; 257: 344-355. https://doi.org/10.1016/j.jpowsour.2014.02.004.
- 106Smith J, Singh R, Hinterberger M, Mochizuki M. Battery thermal management system for electric vehicle using heat pipes. International Journal of Thermal Sciences. 2018; 134: 517-529. https://doi.org/10.1016/j.ijthermalsci.2018.08.022.
- 107Wang J, Gan Y, Liang J, Tan M, Li Y. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Applied Thermal Engineering. 2019; 151: 475-485. https://doi.org/10.1016/j.applthermaleng.2019.02.036.
- 108Feng L, Zhou S, Li Y, et al. Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling. Journal of Energy Storage. 2018; 16: 84-92. https://doi.org/10.1016/j.est.2018.01.001.
- 109Deng S, Li K, Xie Y, Wu C, Wang P, Yu M, Li B, Zheng J. Heat Pipe Thermal Management Based on High-Rate Discharge and Pulse Cycle Tests for Lithium-Ion Batteries. Energies. 2019; 12(16): 3143. https://doi.org/10.3390/en12163143.
- 110Putra N, Ariantara B, Pamungkas RA. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied Thermal Engineering. 2016; 99: 784-789. https://doi.org/10.1016/j.applthermaleng.2016.01.123.
- 111Qin P, Liao M, Zhang D, Liu Y, Sun J, Wang Q. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material. Energy Conversion and Management. 2019; 195: 1371-1381. https://doi.org/10.1016/j.enconman.2019.05.084.
- 112Ling Z, Wang F, Fang X, Gao X, Zhang Z. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Applied Energy. 2015; 148: 403-409. https://doi.org/10.1016/j.apenergy.2015.03.080.
- 113An Z, Chen X, Zhao L, Gao Z. Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling. Applied Thermal Engineering. 2019; 163: 114345. https://doi.org/10.1016/j.applthermaleng.2019.114345.
- 114Kshetrimayum KS, Yoon YG, Gye HR, Lee CJ. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Applied Thermal Engineering. 2019; 159: 113797. https://doi.org/10.1016/j.applthermaleng.2019.113797.
- 115Zhao R, Gu J, Liu J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. Journal of Power Sources. 2015; 273: 1089-1097. https://doi.org/10.1016/j.jpowsour.2014.10.007.
- 116Li X, Zhong Z, Luo J, et al. Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module. International Journal of Photoenergy. 2019;2019; 2019: 1-10. https://doi.org/10.1155/2019/3725364.
- 117Lyu Y, Siddique ARM, Majid SH, Biglarbegian M, Gadsden SA, Mahmud S. Electric vehicle battery thermal management system with thermoelectric cooling. Energy Reports. 2019; 5: 822-827. https://doi.org/10.1016/j.egyr.2019.06.016.
- 118Zhang C, Xia Z, Wang B, et al. A Li-Ion Battery Thermal Management System Combining a Heat Pipe and Thermoelectric Cooler. Energies. 2020; 13(4): 841. https://doi.org/10.3390/en13040841.