Tailoring Conductive 3D Porous Hard Carbon for Supercapacitors
Huiqian Qi
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorJijian Xu
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742 USA
Search for more papers by this authorPeng Sun
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXiaohuan Qi
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYang Xiao
School of Chemistry, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorWei Zhao
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Search for more papers by this authorRakesh Joshi
School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Fuqiang Huang
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Search for more papers by this authorHuiqian Qi
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorJijian Xu
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742 USA
Search for more papers by this authorPeng Sun
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXiaohuan Qi
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYang Xiao
School of Chemistry, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorWei Zhao
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Search for more papers by this authorRakesh Joshi
School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Fuqiang Huang
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Search for more papers by this authorAbstract
Hard carbon has attracted great attention for energy storage owing to low cost and extremely high microporosity, however, hindered by its low electrical conductivity. The common strategy to improve the conductivity is through graphitization process which requires temperatures as high as 3000 °C and inevitably destroys the porous structure. Herein, a balance between the specific surface area and electrical conductivity in a 3D porous hard carbon by in situ iron-catalyzed graphitization process together with the Si–O–Si network is successfully achieved. The Fe can accelerate the localized graphitization at relatively low temperature (1000 °C) to form nanographite domains with enhanced conductivity, while the Si–O–Si network contributes to generating a 3D porous structure. As a result, the optimized hard carbon exhibits a 3D interconnected and hierarchical porous structure with extremely high specific surface area (2075 m2 g−1) and excellent electrical conductivity (12 S cm−1) which is comparable with that of artificial graphite. And thus, high capacitance of 315 F g−1 and excellent rate capability (174 F g−1 at 40 A g−1) are simultaneously achieved when used as electrodes for supercapacitors. The strategy is promising to build hard carbon materials with well-tuned properties for high-performance energy storage.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ente202101103-sup-0001-SuppData-S1.pdf771.9 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Y. Li, Y. Hu, M. Titirici, L. Chen, X. Huang, Adv. Energy Mater. 2016, 6, 1600659.
- 2 S. Chen, J. Wang, L. Fan, R. Ma, E. Zhang, Q. Liu, B. Lu, Adv. Energy Mater. 2018, 8, 1800140.
- 3 X. Sun, X. Zhang, W. Liu, K. Wang, C. Li, Z. Li, Electrochim. Acta 2017, 235, 158.
- 4 J. Zhang, J. Wang, Z. Shi, Z. Xu, Chin. Chem. Lett. 2018, 29, 620.
- 5 Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Adv. Energy Mater. 2016, 6, 1501874.
- 6 J. Jiang, Y. Zhang, Z. Li, Y. An, Q. Zhu, Y. Xu, S. Zang, H. Dou, X. Zhang, J. Colloid Interface Sci. 2020, 567, 75.
- 7 Q. Liu, W. Gong, S. Li, C. Zhao, D. Xu, Y. Liu, Z. Yang, X. Bai, A. Ying, J. Power Sources 2021, 515, 230621.
- 8 S. Dong, X. He, H. Zhang, X. Xie, M. Yu, C. Yu, N. Xiao, J. Qiu, J. Mater. Chem. A 2018, 6, 15954.
- 9 W. Luo, Z. Jian, Z. Xing, W. Wang, C. Bommier, M. M. Lerner, X. Ji, ACS Cent. Sci. 2015, 1, 516.
- 10 Y. Li, Y. Hu, X. Qi, X. Rong, H. Li, Energy Storage Mater. 2016, 5, 191.
- 11 P. Lu, Y. Sun, H. Xiang, X. Liang, Y. Yu, Adv. Energy Mater. 2018, 8, 1702434.
- 12 C. Ding, L. Huang, J. Lan, Y. Yu, W. Zhong, X. Yang, Small 2020, 16, 1906883.
- 13 Z. V. Bobyleva, O. A. Drozhzhin, K. A. Dosaev, A. Kamiyama, S. V. Ryazantsev, S. Komaba, E. V. Antipov, Electrochim. Acta 2020, 354, 136647.
- 14 C. Zhao, Q. Wang, Y. Lu, B. Li, L. Chen, Y.-S. Hu, Sci. Bull. 2018, 63, 1125.
- 15 L. Yin, Y. Wang, C. Han, Y.-M. Kang, X. Ma, H. Xie, M. Wu, J. Power Sources 2016, 305, 156.
- 16 D. Yan, S.-H. Li, L.-P. Guo, X.-L. Dong, Z.-Y. Chen, W.-C. Li, ACS Appl. Mater. Interfaces 2018, 10, 43946.
- 17 X. Chen, Y. Hou, H. Wang, Y. Cao, J. He, J. Phys. Chem. C 2008, 112, 8172.
- 18 Z. He, P. Alexandridis, Polymers 2018, 10, 32.
- 19 M. Peng, W. Yang, L. Li, K. Zhang, L. Wang, T. Hu, K. Yuan, Y. Chen, Chem. Commun. 2021, 57, 10731.
- 20 J. Xu, W. Ding, W. Zhao, W. Zhao, Z. Hong, F. Huang, ACS Energy Lett. 2017, 2, 659.
- 21 B. Li, S. Yang, S. Li, B. Wang, J. Liu, Adv. Energy Mater. 2015, 5, 1500289.
- 22 A. H. Wibowo, L. Listiyaningrum, M. Firdaus, D. M. Widjonarko, H. Storz, Prog. Org. Coatings 2018, 125, 119.
- 23 Y. Wan, D. Zhao, Chem. Rev. 2007, 107, 2821.
- 24
S. B. Bhaduri, C. J. Brinker, G. W. Scherer, Mater. Manuf. Process. 1993, 8, 391.
10.1080/10426919308934843 Google Scholar
- 25 X. Liu, C. Ma, Y. Wen, X. Chen, X. Zhao, T. Tang, R. Holze, E. Mijowska, Carbon N. Y. 2021, 171, 819.
- 26 M. Peng, L. Wang, L. Li, X. Tang, B. Huang, T. Hu, K. Yuan, Y. Chen, Adv. Funct. Mater. 2021, 2109524.
- 27 A. C. Ferrari, J. Robertson, Phys. Rev. B 2001, 64, 75414.
- 28 A. C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095.
- 29 A. Lazzarini, A. Piovano, R. Pellegrini, G. Agostini, S. Rudić, C. Lamberti, E. Groppo, Phys. Procedia 2016, 85, 20.
- 30 Q. H. Fan, D. D. Shao, J. Hu, C. L. Chen, W. S. Wu, X. K. Wang, Radiochim. Acta 2009, 97, 141.
- 31 M. Smith, L. Scudiero, J. Espinal, J.-S. McEwen, M. Garcia-Perez, Carbon N. Y. 2016, 110, 155.
- 32 D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science (80-.). 2016, 351, 361.
- 33 S. Maldonado, S. Morin, K. J. Stevenson, Carbon N. Y. 2006, 44, 1429.
- 34 Z. Ling, G. Wang, M. Zhang, X. Fan, C. Yu, J. Yang, N. Xiao, J. Qiu, Nanoscale 2015, 7, 5120.
- 35 X. Yang, Y. Li, P. Zhang, L. Sun, X. Ren, H. Mi, Carbon N. Y. 2020, 157, 70.
- 36 N. He, S. Yoo, J. Meng, O. Yildiz, P. D. Bradford, S. Park, W. Gao, Carbon N. Y. 2017, 120, 304.
- 37 D. Guo, J. Qian, R. Xin, Z. Zhang, W. Jiang, G. Hu, M. Fan, J. Colloid Interface Sci. 2019, 538, 199.
- 38 V. Aravindan, W. Chuiling, M. V. Reddy, G. V. S. Rao, B. V. R. Chowdari, S. Madhavi, Phys. Chem. Chem. Phys. 2012, 14, 5808.
- 39 X. Wu, H. Li, X. Yang, X. Wang, Z. Miao, P. Zhou, J. Zhou, S. Zhuo, Electrochim. Acta 2021, 368, 137610.
- 40 M. U. Rani, K. Nanaji, T. N. Rao, A. S. Deshpande, J. Power Sources 2020, 471, 228387.
- 41 Y. Zhang, Z. Tang, Waste Manag. 2020, 106, 250.
- 42 T. Lin, I.-W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science (80-.) 2015, 350, 1508.
- 43 J. Zhi, M. Zhou, Z. Zhang, O. Reiser, F. Huang, Nat. Commun. 2021, 12, 1.
- 44 M. Peng, L. Wang, L. Li, Z. Peng, X. Tang, T. Hu, K. Yuan, Y. Chen, eScience 2021, 1, 83.
- 45 X. Shi, S. Zhang, X. Chen, T. Tang, E. Mijowska, Carbon N. Y. 2020, 157, 55.