Improving Hole Transport and Extraction by Interface Engineering in Perovskite Solar Cells
Lingfeng Li
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorQianwen Wei
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorLeiming Yu
Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, 650091 China
Search for more papers by this authorJuan Wang
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorRongfei Wang
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorTao Sun
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorChong Wang
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorCorresponding Author
Yu Yang
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorCorresponding Author
Xiaoming Wen
Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, 3122 Australia
Search for more papers by this authorLingfeng Li
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorQianwen Wei
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorLeiming Yu
Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, 650091 China
Search for more papers by this authorJuan Wang
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorRongfei Wang
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorTao Sun
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorChong Wang
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorCorresponding Author
Yu Yang
National Center for International Research on photovoltaic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091 China
Search for more papers by this authorCorresponding Author
Xiaoming Wen
Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, 3122 Australia
Search for more papers by this authorAbstract
Efficient carrier transport and extraction is essentially important for perovskite solar cells (PSCs). Here, an outstanding organic material tetraphenyldibenzoperiflanthene (DBP) is used to modify the perovskite/spiro-OMeTAD interface as the intermediate layer. Using time-resolved photoluminescence technique and dynamic analysis of photogenerated charge carriers, a significantly faster hole extraction and faster hole transport occurring in perovskite/DBP/spiro interface is demonstrated, this is ascribed to an intermixing layer of perovskite and thin DBP layer. The improved mobility has been further confirmed by the Hall measurement. As a consequence, the improved hole extraction and reduced interface recombination result in an improved performance of PSC, including improved conversion efficiency, mitigated J–V hysteresis, and amelioration of stability under humid conditions. This work provides a detailed insight into the transport and extraction of charge carriers improved by the intermediate layer of organic small molecules as an effective strategy for interface engineering by solution spin coating.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
ente202101002-sup-0001-SuppData-S1.pdf467.9 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 2 H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623.
- 3 J. P. Correa-Baena, M. Saliba, T. Buonassisi, M. Gratzel, A. Abate, W. Tress, A. Hagfeldt, Science 2017, 358, 739.
- 4 M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
- 5 J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. L. Lu, F. Rotermund, Y. K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587.
- 6 H. J. Snaith, Nat. Mater. 2018, 17, 372.
- 7 J. B. Zhang, Q. Daniel, T. Zhang, X. M. Wen, B. Xu, L. C. Sun, U. Bach, Y. B. Cheng, ACS Nano 2018, 12, 10452.
- 8 S. S. Shin, S. J. Lee, S. I. Seok, Adv. Funct. Mater. 2019, 29, 1900455.
- 9 J. Chen, N. G. Park, Adv. Mater. 2019, 31, 1803019.
- 10 J. Urieta-Mora, I. Garcia-Benito, A. Molina-Ontoria, N. Martin, Chem. Soc. Rev. 2018, 47, 8541.
- 11 C. X. Ran, J. T. Xu, W. Y. Gao, C. M. Huang, S. X. Dou, Chem. Soc. Rev. 2018, 47, 4581.
- 12 S. H. Wang, T. Sakurai, W. J. Wen, Y. B. Qi, Adv. Mater. Interfaces 2018, 5, 1800260.
- 13 H. P. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu, Y. Yang, Science 2014, 345, 542.
- 14 H. R. Tan, A. Jain, O. Voznyy, X. Z. Lan, F. P. G. de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. J. Yuan, B. Zhang, Y. C. Zhao, F. J. Fan, P. C. Li, L. N. Quan, Y. B. Zhao, Z. H. Lu, Z. Y. Yang, S. Hoogland, E. H. Sargent, Science 2017, 355, 722.
- 15 Y. Q. Zhang, X. T. Liu, P. W. Li, Y. Y. Duan, X. T. Hu, F. Y. Li, Y. L. Song, Nano Energy 2019, 56, 733.
- 16 J. Chen, X. Zhao, S. G. Kim, N. G. Park, Adv. Mater. 2019, 31, 1902902.
- 17 D. Zheng, R. X. Peng, G. Wang, J. L. Logsdon, B. H. Wang, X. B. Hu, Y. Chen, V. P. Dravid, M. R. Wasielewski, J. S. Yu, W. Huang, Z. Y. Ge, T. J. Marks, A. Facchetti, Adv. Mater. 2019, 31, 1903239.
- 18 A. Bercegol, S. Cacovich, G. Vidon, S. Mejaouri, A. Yaiche, J. B. Puel, C. Longeaud, J. F. Guillemoles, S. Jutteau, J. Rousset, D. Ory, L. Lombez, J. Phys. Chem. C 2020, 124, 11741.
- 19 D. Q. Bi, C. Y. Yi, J. S. Luo, J. D. Decoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Gratzel, Nat. Energy 2016, 1, 16142.
- 20 J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 2013, 499, 316.
- 21 R. Scholin, M. H. Karlsson, S. K. Eriksson, H. Siegbahn, E. M. J. Johansson, H. Rensmo, J. Phys. Chem. C 2012, 116, 26300.
- 22 A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M. E. Errico, J. Kirkpatrik, J. M. Ball, P. Docampo, I. McPherson, H. J. Snaith, Phys. Chem. Chem. Phys. 2013, 15, 2572.
- 23 Z. Li, C. X. Xiao, Y. Yang, S. P. Harvey, D. H. Kim, J. A. Christians, M. J. Yang, P. Schulz, S. U. Nanayakkara, C. S. Jiang, J. M. Luther, J. J. Berry, M. C. Beard, M. M. Al-Jassim, K. Zhu, Energ Environ. Sci. 2017, 10, 1234.
- 24 Y. F. Yue, N. Salim, Y. Z. Wu, X. D. Yang, A. Islam, W. Chen, J. Liu, E. B. Bi, F. X. Xie, M. L. Cai, L. Y. Han, Adv. Mater. 2016, 28, 10738.
- 25 E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh, J. Seo, Nature 2019, 567, 511.
- 26 N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Gratzel, Science 2017, 358, 768.
- 27 M. Abdi-Jalebi, M. I. Dar, S. P. Senanayak, A. Sadhanala, Z. Andaji-Garmaroudi, L. M. Pazos-Outon, J. M. Richter, A. J. Pearson, H. Sirringhaus, M. Gratzel, R. H. Friend, Sci. Adv. 2019, 5, eaav2012.
- 28 S. Q. Li, Y. K. Wu, C. X. Zhang, Y. F. Liu, Q. J. Sun, Y. X. Cui, S. Z. F. Liu, Y. Y. Hao, ACS Appl. Mater. Interfaces 2020, 12, 45073.
- 29 G. Z. Liu, H. Y. Zheng, X. X. Xu, S. D. Xu, X. X. Zhang, X. Pan, S. Y. Dai, Adv. Funct. Mater. 2019, 29, 1807565.
- 30 X. Liu, K. Ding, A. Panda, S. R. Forrest, ACS Nano 2016, 10, 7619.
- 31 O. L. Griffith, S. R. Forrest, Nano Lett. 2014, 14, 2353.
- 32 S. Kawata, Y. J. Pu, C. Ohashi, K. Nakayama, Z. R. Hong, J. Kido, J. Mater. Chem. C 2014, 2, 501.
- 33 H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun. 2014, 5, 4016.
- 34 D. Yokoyama, Z. Q. Wang, Y. J. Pu, K. Kobayashi, J. Kido, Z. R. Hong, Sol. Energy Mater. Sol. Cells 2012, 98, 472.
- 35 J. Li, T. L. Bu, Y. F. Liu, J. Zhou, J. L. Shi, Z. L. Ku, Y. Peng, J. Zhong, Y. B. Cheng, F. Z. Huang, Chemsuschem 2018, 11, 2898.
- 36 F. Wang, W. Geng, Y. Zhou, H. H. Fang, C. J. Tong, M. A. Loi, L. M. Liu, N. Zhao, Adv. Mater. 2016, 28, 9986.
- 37 T. Leijtens, G. E. Eperon, A. J. Barker, G. Grancini, W. Zhang, J. M. Ball, A. R. S. Kandada, H. J. Snaith, A. Petrozza, Energy Environ. Sci. 2016, 9, 3472.
- 38 J. S. Manser, P. V. Kamat, Nat. Photonics 2014, 8, 737.
- 39 S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, H. J. Snaith, Phys. Rev. Appl. 2014, 2, 034007.
- 40 T. Kirchartz, J. A. Márquez, M. Stolterfoht, T. Unold, Adv. Mater. 2020, 10, 1904134.
- 41 J. Zhang, Q. Daniel, T. Zhang, X. Wen, B. Xu, L. Sun, U. Bach, Y.-B. Cheng, ACS Nano 2018, 12, 10452.
- 42 W. J. Chen, N. D. Pham, H. X. Wang, B. H. Jia, X. M. Wen, ACS Appl. Mater. Interfaces 2021, 13, 5752.
- 43 F. R. Cao, L. X. Meng, M. Wang, W. Tian, L. Li, Adv. Mater 2019, 31, 1806725.
- 44 W. Z. Xu, F. He, M. Zhang, P. B. Nie, S. W. Zhang, C. Zhao, R. P. Luo, J. Z. Li, X. Zhang, S. C. Zhao, W. D. Li, F. Y. Kang, C. W. Nan, G. D. Wei, ACS Energy Lett. 2019, 4, 2491.
- 45 Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, J. Am. Chem. Soc. 2014, 136, 11610.
- 46 W. J. Chen, Z. X. Gan, M. A. Green, B. H. Jia, X. M. Wen, Small Methods 2021, 5, 2000731.
- 47 P. Calado, A. M. Telford, D. Bryant, X. E. Li, J. Nelson, B. C. O’Regan, P. R. F. Barnes, Nat. Commun. 2016, 7, 13831.
- 48 S. Chen, X. M. Wen, R. Sheng, S. J. Huang, X. F. Deng, M. A. Green, A. Ho-Baillie, ACS Appl. Mater. Interfaces 2016, 8, 5351.
- 49 S. A. L. Weber, I. M. Hermes, S. H. Turren-Cruz, C. Gort, V. W. Bergmann, L. Gilson, A. Hagfeldt, M. Graetzel, W. Tress, R. Berger, Energy Environ. Sci. 2018, 11, 2404.
- 50 A. Guerrero, A. Bou, G. Matt, O. Almora, T. Heumuller, G. Garcia-Belmonte, J. Bisquert, Y. Hou, C. Brabec, Adv. Energy Mater. 2018, 8, 1703376.
- 51 E. H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Gratzel, A. Hagfeldt, J. P. Correa-Baena, Energy Environ. Sci. 2016, 9, 3128.