Molten-Salt Technology Application for the Synthesis of Photocatalytic Materials
Laiyu Luo
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorSiyu Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorCorresponding Author
Hong Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorChungui Tian
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorCorresponding Author
Baojiang Jiang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorLaiyu Luo
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorSiyu Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorCorresponding Author
Hong Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorChungui Tian
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorCorresponding Author
Baojiang Jiang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorAbstract
Most of the photocatalytic materials are prepared by wet chemical methods and calcination methods. These preparation methods usually have the problems of slow reaction speed and low crystallinity of products, which seriously restrict the development of photocatalytic technology. Molten salt method (MSM) has attracted much attention of researchers because of its unique advantages in optimizing the synthesis route of photocatalyst. Herein, the application of molten salt technology in the preparation of photocatalytic materials in recent years is summarized. The advantages of MSM in photocatalytic synthesis, such as promoting crystallization, adjusting morphology, accelerating the construction of heterostructure, stabilizing single atom, doping auxiliary elements and adjusting defect position, are also discussed in detail. It is indicated that MSM has important application potential in the preparation of photocatalytic materials. Meanwhile, the research achievements and existing problems of MSM are summarized, and suggestions for further application of MSM in photocatalyst's preparation are put forward.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109.
- 2A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 3J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nat. Commun. 2012, 3, 1137.
- 4I. Ghosh, J. Khamrai, A. Savateev, N. Shlapakov, M. Antonietti, B. König, Science 2019, 365, 360.
- 5S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 2016, 55, 1830.
- 6X. Xiao, Y. Gao, L. Zhang, J. Zhang, Q. Zhang, Q. Li, H. Bao, J. Zhou, S. Miao, N. Chen, J. Wang, B. Jiang, C. Tian, H. Fu, Adv. Mater. 2020, 32, 2003082.
- 7Y. Jiang, H. Ning, C. Tian, B. Jiang, Q. Li, H. Yan, X. Zhang, J. Wang, L. Jing, H. Fu, Appl. Catal. B 2018, 229, 1.
- 8Y. Fu, Q. Li, J. Liu, Y. Jiao, S. Hu, H. Wang, S. Xu, B. Jiang, J. Colloid Interface Sci. 2020, 570, 143.
- 9F. Li, X. Xiao, C. Zhao, J. Liu, Q. Li, C. Guo, C. Tian, L. Zhang, J. Hu, B. Jiang, J. Colloid Interface Sci. 2020, 572, 22.
- 10C. Zhao, Q. Li, Y. Xie, L. Zhang, X. Xiao, D. Wang, Y. Jiao, C. A. Hurd Price, B. Jiang, J. Liu, J. Mater. Chem. A. 2020, 8, 305.
- 11J. Feng, M. Gao, Z. Zhang, M. Gu, J. Wang, W. Zeng, Y. Ren, Results Phys. 2018, 11, 331.
- 12J. Feng, Z. Zhang, M. Gao, M. Gu, J. Wang, W. Zeng, Y. Lv, Y. Ren, Z. Fan, Mater. Chem. Phys. 2019, 223, 758.
- 13W. Lin, K. Lu, S. Zhou, J. Wang, F. Mu, Y. Wang, Y. Wu, Y. Kong, Appl. Surf. Sci. 2019, 474, 194.
- 14Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 2015, 54, 12868.
- 15J. Zhang, M. Zhang, R.Q. Sun, X. Wang, Angew. Chem. Int. Ed. 2012, 124, 10292.
10.1002/ange.201205333 Google Scholar
- 16S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 2015, 27, 2150.
- 17Z. Li, Z. Jia, Y. Luan, T. Mu, Curr. Opin. Solid State Mater. Sci. 2008, 12, 1.
- 18X. Liu, N. Fechler, M. Antonietti, Chem. Soc. Rev. 2013, 42, 8237.
- 19L. Huang, Z. Hu, H. Jin, J. Wu, K. Liu, Z. Xu, J. Wan, H. Zhou, J. Duan, B. Hu, J. Zhou, Adv. Funct. Mater. 2020, 30, 1908486.
- 20G. Zhang, G. Li, Z. A. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2017, 56, 13445.
- 21Y. Li, F. Gong, Q. Zhou, X. H. Feng, J. J. Fan, Q. J. Xiang, Appl. Catal. B 2020, 268, 118381.
- 22R. H. Arendt, J. H. Rosolowski, J. W. Szymaszek, Mater. Res. Bull. 1979, 14, 703.
- 23E. Wirnhier, M. Doblinger, D. Gunzelmann, J. Senker, B. V. Lotsch, W. Schnick, Chem. Eur. J. 2011, 17, 3213.
- 24D. H. Xiang, Y. B. Zhu, C. J. Cai, Z. J. He, Z. S. Liu, D. G. Yin, J. Luo, Phys. E. 2011, 44, 733.
- 25A. K. Mann, S. Wicker, S. E. Skrabalak, Adv. Mater. 2012, 24, 6186.
- 26S. Y. Chong, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, A. Thomas, M. Antonietti, M. J. Bojdys, J. Mater. Chem. A. 2013, 1, 1102.
- 27Y. Cong, M. Long, Z. W. Cui, X. K. Li, Z. J. Dong, G. M. Yuan, J. Zhang, Appl. Surf. Sci. 2013, 282, 400.
- 28L. Tian, F. Liang, L. Dong, J. Li, Q. Jia, H. Zhang, S. Yan, S. Zhang, J. Am. Ceram. Soc. 2021, 104, 1110.
- 29G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2018, 57, 9372.
- 30G. Zhang, M. Liu, T. Heil, S. Zafeiratos, A. Savateev, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 14950.
- 31G. Zhang, G. Li, T. Heil, S. Zafeiratos, F. Lai, A. Savateev, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 3433.
- 32X. Yan, J. T. Li, H. F. Zhou, J Mater Sci: Mater Electron. 2019, 30, 11706.
- 33M. F. Zheng, T. Yuan, J. L. Shi, W. C. Cai, X. C. Wang, ACS Catal. 2019, 9, 8068.
- 34Y. Wang, Y. Li, W. Ju, J. Wang, H. Yao, L. Zhang, J. Wang, Z. Li, Carbon 2016, 102, 477.
- 35X. Yan, G. Ning, P. Zhao, Catalysts 2019, 9, 55.
- 36J. Yang, Y. Liang, K. Li, G. Yang, K. Wang, R. Xu, X. Xie, Catal. Sci. Technol. 2019, 9, 3342.
- 37Y. Zhou, C. Liao, Y. Fan, S. Ma, M. Su, Z. Zhou, T.-S. Chan, Y.-R. Lu, K. Shih, Environ. Sci. Nano. 2019, 6, 3324.
- 38C. F. Zhong, W. Weng, X. X. Liang, D. Gu, W. Xiao, Appl. Surf. Sci. 2020, 507, 145072.
- 39Z. Wu, H. Gao, S. Yan, Z. Zou, Dalton Trans. 2014, 43, 12013.
- 40M. Xiao, B. Luo, M. Konarova, Z. Wang, L. Wang, Eur. J. Inorg. Chem. 2020, 2020 2942.
- 41B. Zhang, Q. Wang, J. Zhuang, S. Guan, B. Li, J. Photochem. Photobiol. A. 2018, 362, 1.
- 42H. Zhang, Z. Yang, L. Shangguan, X. Song, J. Sun, W. Lei, Nanotechnology 2020, 31, 145716.
- 43Y. Wang, X. Zhou, W. Xu, Y. Sun, T. Wang, Y. Zhang, J. Dong, W. Hou, N. Wu, L. Wu, B. Zhou, Y. Wu, Y. Du, W. Zhong, Appl. Catal. A. 2019, 582, 117118.
- 44C. Fettkenhauer, J. Weber, M. Antonietti, D. Dontsova, RSC Adv. 2014, 4, 40803.
- 45K. Wang, G. Gu, S. Hu, J. Zhang, X. Sun, F. Wang, P. Li, Y. Zhao, Z. Fan, X. Zou, Chem. Eng. J. 2019, 368, 896.
- 46J. Yang, Y. Liang, K. Li, G. Yang, K. Wang, R. Xu, X. Xie, Appl. Catal. B. 2020, 262, 118252.
- 47M. Zhang, L. Yang, Y. Wang, L. Li, S. Chen, Appl. Surf. Sci. 2019, 489, 631.
- 48J. Zhao, L. Ma, H. Wang, Y. Zhao, J. Zhang, S. Hu, Appl. Surf. Sci. 2015, 332, 625.
- 49Y. Li, D. Zhang, J. Fan, Q. Xiang, Chin. J. Catal. 2021, 42, 627.
- 50Y. Li, D. Zhang, X. Feng, Q. Xiang, Chin. J. Catal. 2020, 41, 21.
- 51A. Jin, Y. Jia, C. Chen, X. Liu, J. Jiang, X. Chen, F. Zhang, J. Phys. Chem. C. 2017, 121, 21497.
- 52L. Tian, J. Li, F. Liang, S. Chang, H. Zhang, M. Zhang, S. Zhang, J. Colloid Interface Sci. 2019, 536, 664.
- 53M. Cao, K. Wang, I. Tudela, X. Fan, Appl. Surf. Sci. 2020, 533, 147429
- 54Y. Duan, J. Li, X. Shang, D. Jia, C. Li, S. Liu, J. Mater. Sci. 2020, 55, 13675.
- 55X. Qu, S. Hu, J. Bai, P. Li, G. Lu, X. Kang, J. Mater. Sci. Technol. 2018, 34, 1932.
- 56J. Bai, Y. Sun, M. Li, L. Yang, J. Li, S. Hu, New J. Chem. 2018, 42, 13529.
- 57N. Li, J. Zhou, Z. Sheng, W. Xiao, Appl. Surf. Sci. 2018, 430, 218.
- 58L. Tian, J. Y. Li, F. Liang, J. K. Wang, S. S. Li, H. J. Zhang, S. W. Zhang, Appl. Catal. B 2018, 225, 307.
- 59Y. Dou, C. Zhu, M. Zhu, Y. Fu, H. Wang, C. Shi, H. Huang, Y. Liu, Z. Kang, Appl. Surf. Sci. 2020, 509, 144706.
- 60M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. Du, L. Wang, Angew. Chem. Int. Ed. 2020, 59, 7230.
- 61P. L. Lin, A. D. Pelton, C. W. Bale, J. Am. Ceram. Soc. 1979, 62, 414.
- 62M. M. Kenisarin, Renew. Sustain. Energy Rev. 2010, 14, 955.
- 63X. Liu, C. Giordano, M. Antonietti, J. Mater. Chem. 2012, 22, 5454.
- 64V. V. Shvalagin, G. V. Korzhak, S. Y. Kuchmiy, M. A. Skoryk, O. V. Selyshchev, D. R. T. Zahn, J. Photochem. Photobiol. A. 2020, 390, 112295.
- 65B. Liu, L. Ye, R. Wang, J. Yang, Y. Zhang, R. Guan, L. Tian, X. Chen, ACS Appl. Mater. Interfaces 2018, 10, 4001.
- 66M. Raciulete, A. Kachina, E. Puzenat, P. Afanasiev, J. Solid State Chem. 2010, 183, 2438.
- 67D. H. Kerridge, Pure Appl. Chem. 1975, 41, 355.
- 68S. V. Volkov, Chem. Soc. Rev. 1990, 19, 21.
- 69W. Sundermeyer, Angew. Chem. 1965, 77, 241.
- 70D. Arney, B. Porter, B. Greve, P. A. Maggard, J. Photochem. Photobiol. A. 2008, 199, 230.
- 71K. Kanade, J. Baeg, K. Kong, B. Kale, S. Lee, S. Moon, C. Lee, S. Yoon, Int. J. Hydrogen Energy 2008, 33, 6904.
- 72B. Liu, H. M. Chen, C. Liu, S. C. Andrews, C. Hahn, P. Yang, J. Am. Chem. Soc. 2013, 135, 9995.
- 73L. H. Lin, Z. Y. Lin, J. Zhang, X. Cai, W. Lin, Z. Y. Yu, X. C. Wang, Nat. Catal. 2020, 3, 649.
- 74R. Hailili, C. Wang, E. Lichtfouse, Appl. Catal. B 2018, 232, 531.
- 75H. Kato, M. Kobayashi, M. Hara, M. Kakihana, Catal. Sci. Technol. 2013, 3, 1733.
- 76W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, H. Zhao, Angew. Chem. Int. Ed. 2019, 58, 16644.
- 77Y. Lin, W. Su, X. Wang, X. Fu, X. Wang, Angew. Chem. Int. Ed. 2020, 59, 1.
10.1002/anie.201914874 Google Scholar
- 78H.-H. Zou, W.-Q. Li, H. Zhang, L. Liu, C.-T. He, S.-L. Zhong, Chem. Eng. J. 2021, 404, 126567.
- 79Y. Xia, Z. H. Tian, T. Heil, A. Y. Meng, B. Cheng, S. W. Cao, J. G. Yu, M. Antonietti, Joule 2019, 3, 2792.
- 80Z. Zeng, H. Yu, X. Quan, S. Chen, S. Zhang, Appl. Catal. B 2018, 227, 153.
- 81Y. L. Yang, S. C. Wang, Y. L. Jiao, Z. L. Wang, M. Xiao, A. J. Du, Y. L. Li, J. S. Wang, L. Z. Wang, Adv. Funct. Mater. 2018, 28, 1805698.
- 82G. Gao, Y. Jiao, E. R. Waclawik, A. Du, J. Am. Chem. Soc. 2016, 138, 6292.
- 83Z. Fang, D. Li, R. Chen, Y. Huang, B. Luo, W. Shi, ACS Appl. Mater. Interfaces 2019, 11, 22255.
- 84S. J. Guan, T. T. Watabe, L. Hao, H. Yoshida, Y. L. Cheng, K. W. Zhou, Y. Lu, Mater. Lett. 2019, 242, 174.
- 85C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Chem. Rev. 2020, 120, 12175.
- 86T. He, C. Zhang, L. Zhang, A. Du, Nano Res. 2019, 12, 1817.
- 87K. Maeda, ACS Catal. 2013, 3, 1486.
- 88Y. Li, X. Li, H. W. Zhang, Q. J. Xiang, Nano Horiz. 2020, 5, 765.
- 89Y. Li, B. Li, D. Zhang, L. Cheng, Q. Xiang, ACS Nano. 2020, 14, 10552.
- 90Z. Zeng, Y. Su, X. Quan, W. Choi, G. Zhang, N. Liu, B. Kim, S. Chen, H. Yu, S. Zhang, Nano Energy. 2020, 69, 104409.
- 91R. Hailili, X. X. Yuan, C. Y. Wang, Catal. Today. 2019, 335, 591.
- 92R. Hailili, Z. Q. Wang, Y. X. Li, Y. H. Wang, V. K. Sharma, X. Q. Gong, C. Y. Wang, Appl. Catal. B 2018, 221, 422.
- 93R. Hailili, Z. Q. Wang, X. Q. Gong, C. Y. Wang, Appl. Catal. B 2019, 254, 86.
- 94H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2017, 29, 1605148.