The Insights of Lithium Metal Plating/Stripping in Porous Hosts: Progress and Perspectives
Ying-Xin Zhan
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorPeng Shi
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXue-Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorFei Ding
Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Jia-Qi Huang
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorZhehui Jin
School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9 Canada
Search for more papers by this authorRong Xiang
Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
Search for more papers by this authorCorresponding Author
Xingjiang Liu
Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYing-Xin Zhan
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorPeng Shi
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXue-Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorFei Ding
Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Jia-Qi Huang
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorZhehui Jin
School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9 Canada
Search for more papers by this authorRong Xiang
Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
Search for more papers by this authorCorresponding Author
Xingjiang Liu
Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorAbstract
Lithium (Li) metal is strongly regarded as a promising anode for next-generation secondary batteries. However, the nonuniform plating/stripping and volume fluctuation of the Li metal anode give rise to low Coulombic efficiency and short lifespan of Li metal batteries, which hinder practical applications of the Li metal anode. A composite Li metal anode that employs a stable porous host has been proposed as a promising strategy to regulate the behaviors of Li plating/stripping and relieve volume fluctuation. In a porous host, the basic building block is a pore. The pore structure affects the distribution of electric and Li-ion concentration fields during Li plating/stripping, thus regulating Li plating/stripping and the lifespan of the composite Li metal anode. Therefore, herein, the recent progress in investigating the behavior of Li plating/stripping in a pore based on liquid electrolytes is summarized from the aspects of pore diameter, depth, and tortuosity. Furthermore, the perspectives of rational design of the pore structure for a composite Li metal anode are presented to promote the development of Li metal anodes.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1D. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19.
- 2H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, D. Aurbach, Mater. Today 2014, 17, 110.
- 3Y. X. Lu, X. H. Rong, Y. S. Hu, L. Q. Chen, H. Li, Energy Storage Mater. 2019, 23, 144.
- 4T. Placke, R. Kloepsch, S. Dühnen, M. Winter, J. Solid State Electrochem. 2017, 21, 1939.
- 5Z. A. Ghazi, Z. Sun, C. Sun, F. Qi, B. An, F. Li, H. M. Cheng, Small 2019, 15, 1900687.
- 6H. Wang, D. Yu, C. Kuang, L. Cheng, W. Li, X. Feng, Z. Zhang, X. Zhang, Y. Zhang, Chem 2019, 5, 313.
- 7B. Liu, J. G. Zhang, W. Xu, Joule 2018, 2, 833.
- 8D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo, W. Liu, L. Yang, J. Lu, K. Amine, Z. Chen, Chem. Soc. Rev. 2020, 49, 5407.
- 9K. Xu, Energy Environ. Mater. 2019, 2, 229.
- 10M. Zhao, B. Q. Li, X. Q. Zhang, J. Q. Huang, Q. Zhang, ACS Cent. Sci. 2020, 6, 1095.
- 11H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.
- 12W. Hua, Z. Yang, H. Nie, Z. Li, J. Yang, Z. Guo, C. Ruan, X. Chen, S. Huang, ACS Nano 2017, 11, 2209.
- 13Y.-X. Yao, X.-Q. Zhang, B.-Q. Li, C. Yan, P.-Y. Chen, J.-Q. Huang, Q. Zhang, InfoMat 2020, 2, 379.
- 14B.-Q. Li, L. Kong, C.-X. Zhao, Q. Jin, X. Chen, H.-J. Peng, J.-L. Qin, J.-X. Chen, H. Yuan, Q. Zhang, J.-Q. Huang, InfoMat 2019, 1, 533.
- 15S. Dörfler, H. Althues, P. Härtel, T. Abendroth, B. Schumm, S. Kaskel, Joule 2020, 4, 539.
- 16A. Manthiram, Y. Fu, S. H. Chung, C. Zu, Y. S. Su, Chem. Rev. 2014, 114, 11751.
- 17P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2011, 11, 19.
- 18C. Shu, J. Wang, J. Long, H. K. Liu, S. X. Dou, Adv. Mater. 2019, 31, 1804587.
- 19Y. Qiao, H. Deng, P. He, H. Zhou, Joule 2020, 4, 1445.
- 20X. Q. Zhang, C. Z. Zhao, J. Q. Huang, Q. Zhang, Engineering 2018, 4, 831.
- 21S. Chen, C. Niu, H. Lee, Q. Li, L. Yu, W. Xu, J.-G. Zhang, E. J. Dufek, M. S. Whittingham, S. Meng, J. Xiao, J. Liu, Joule 2019, 3, 1094.
- 22C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2019, 4, 551.
- 23R. Weber, M. Genovese, A. J. Louli, S. Hames, C. Martin, I. G. Hill, J. R. Dahn, Nat. Energy 2019, 4, 683.
- 24W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu, Y. Lu, Adv. Mater. 2020, 32, 2001740.
- 25X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.
- 26R. H. Wang, W. S. Cui, F. L. Chu, F. X. Wu, J. Energy Chem. 2020, 48, 145.
- 27L. Kong, Q. Jin, J. Q. Huang, L. D. Zhao, P. Li, B. Q. Li, H. J. Peng, X. T. Zhang, Q. Zhang, Energy Technol. 2019, 7, 1900111.
- 28C. Jin, O. Sheng, Y. Lu, J. Luo, H. Yuan, W. Zhang, H. Huang, Y. Gan, Y. Xia, C. Liang, J. Zhang, X. Tao, Nano Energy 2018, 45, 203.
- 29J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J. G. Zhang, Nat. Commun. 2015, 6, 6362.
- 30S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, 1706102.
- 31X. Q. Zhang, T. Li, B. Q. Li, R. Zhang, P. Shi, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem., Int. Ed. 2020, 59, 3252.
- 32X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S. C. Liou, K. Amine, K. Xu, C. Wang, Nat. Nanotechnol. 2018, 13, 715.
- 33X. Cao, X. Ren, L. Zou, M. H. Engelhard, W. Huang, H. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Nat. Energy 2019, 4, 796.
- 34Y. Ma, Z. Zhou, C. Li, L. Wang, Y. Wang, X. Cheng, P. Zuo, C. Du, H. Huo, Y. Gao, G. Yin, Energy Storage Mater. 2018, 11, 197.
- 35Y. Jie, X. Ren, R. Cao, W. Cai, S. Jiao, Adv. Funct. Mater. 2020, 30, 1910777.
- 36Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269.
- 37X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, S. Zhang, Green Energy Environ. 2019, 4, 360.
- 38K. Xu, Chem. Rev. 2014, 114, 11503.
- 39R. Xu, Y. Xiao, R. Zhang, X. B. Cheng, C. Z. Zhao, X. Q. Zhang, C. Yan, Q. Zhang, J. Q. Huang, Adv. Mater. 2019, 31, 1808392.
- 40Q. Zhao, Z. Tu, S. Wei, K. Zhang, S. Choudhury, X. Liu, L. A. Archer, Angew. Chem., Int. Ed. 2018, 57, 992.
- 41Z. Lu, W. Li, Y. Long, J. Liang, Q. Liang, S. Wu, Y. Tao, Z. Weng, W. Lv, Q.-H. Yang, Adv. Funct. Mater. 2020, 30, 1907343.
- 42N. W. Li, Y. Shi, Y. X. Yin, X. X. Zeng, J. Y. Li, C. J. Li, L. J. Wan, R. Wen, Y. G. Guo, Angew. Chem., Int. Ed. 2018, 57, 1505.
- 43C.-Z. Zhao, H. Duan, J.-Q. Huang, J. Zhang, Q. Zhang, Y.-G. Guo, L.-J. Wan, Sci. China Chem. 2019, 62, 1286.
- 44C. Yan, H. Yuan, H. S. Park, J.-Q. Huang, J. Energy Chem. 2020, 47, 217.
- 45X.-Q. Zhang, X.-M. Wang, B.-Q. Li, P. Shi, J.-Q. Huang, A. Chen, Q. Zhang, J. Mater. Chem. A 2020, 8, 4283.
- 46Z. Hou, J. Zhang, W. Wang, Q. Chen, B. Li, C. Li, J. Energy Chem. 2020, 45, 7.
- 47Y. Zhao, G. Li, Y. Gao, D. Wang, Q. Huang, D. Wang, ACS Energy Lett. 2019, 4, 1271.
- 48Y. X. Yuan, F. Wu, G. H. Chen, Y. Bai, C. Wu, J. Energy Chem. 2019, 37, 197.
- 49H. Ye, Y. Zhang, Y. X. Yin, F. F. Cao, Y. G. Guo, ACS Cent. Sci. 2020, 6, 661.
- 50R. Zhang, N. W. Li, X. B. Cheng, Y. X. Yin, Q. Zhang, Y. G. Guo, Adv. Sci. 2017, 4, 1600445.
- 51P. Shi, X. Q. Zhang, X. Shen, R. Zhang, H. Liu, Q. Zhang, Adv. Mater. Technol. 2020, 5, 1900806.
- 52X. Shen, X. Cheng, P. Shi, J. Huang, X. Zhang, C. Yan, T. Li, Q. Zhang, J. Energy Chem. 2019, 37, 29.
- 53X. Chen, X. R. Chen, T. Z. Hou, B. Q. Li, X. B. Cheng, R. Zhang, Q. Zhang, Sci. Adv. 2019, 5, eaau7728.
- 54T. Li, P. Shi, R. Zhang, H. Liu, X. B. Cheng, Q. Zhang, Nano Res. 2019, 12, 2224.
- 55H. Ye, Z. J. Zheng, H. R. Yao, S. C. Liu, T. T. Zuo, X. W. Wu, Y. X. Yin, N. W. Li, J. J. Gu, F. F. Cao, Y. G. Guo, Angew. Chem., Int. Ed. 2019, 58, 1094.
- 56X. Chen, H. R. Li, X. Shen, Q. Zhang, Angew. Chem., Int. Ed. 2018, 57, 16643.
- 57O. Borodin, X. Ren, J. Vatamanu, A. von Wald Cresce, J. Knap, K. Xu, Acc. Chem. Res. 2017, 50, 2886.
- 58R. Zhang, X. Shen, X.-B. Cheng, Q. Zhang, Energy Storage Mater. 2019, 23, 556.
- 59Y. C. Fan, T. S. Wang, D. Legut, Q. F. Zhang, J. Energy Chem. 2019, 39, 160.
- 60X. L. Xu, S. J. Wang, H. Wang, C. Hu, Y. Jin, J. B. Liu, H. Yan, J. Energy Chem. 2018, 27, 513.
- 61J. Chazalviel, Phys. Rev. A 1990, 42, 7355.
- 62C. Brissot, M. Rosso, J. N. Chazalviel, S. Lascaud, J. Power Sources 1999, 81–82, 925.
- 63B.-Q. Li, X.-R. Chen, X. Chen, C.-X. Zhao, R. Zhang, X.-B. Cheng, Q. Zhang, Research 2019, 2019, 1.
10.1155/2019/4608940 Google Scholar
- 64J. Lopez, A. Pei, J. Y. Oh, G. N. Wang, Y. Cui, Z. Bao, J. Am. Chem. Soc. 2018, 140, 11735.
- 65Q. Pang, X. Liang, I. R. Kochetkov, P. Hartmann, L. F. Nazar, Angew. Chem., Int. Ed. 2018, 57, 9795.
- 66J. Liu, Z. N. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Y. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. H. Yang, X. Q. Yang, J. G. Zhang, Nat. Energy 2019, 4, 180.
- 67P. Shi, X. B. Cheng, T. Li, R. Zhang, H. Liu, C. Yan, X. Q. Zhang, J. Q. Huang, Q. Zhang, Adv. Mater. 2019, 31, 1902785.
- 68T. Hamann, L. Zhang, Y. Gong, G. Godbey, J. Gritton, D. McOwen, G. Hitz, E. D. Wachsman, Adv. Funct. Mater. 2020, 30, 1910362.
- 69G. T. Hitz, D. W. McOwen, L. Zhang, Z. Ma, Z. Fu, Y. Wen, Y. Gong, J. Dai, T. R. Hamann, L. Hu, E. D. Wachsman, Mater. Today 2019, 22, 50.
- 70X.-B. Cheng, H.-J. Peng, J.-Q. Huang, R. Zhang, C.-Z. Zhao, Q. Zhang, ACS Nano 2015, 9, 6373.
- 71R. Zhang, X.-B. Cheng, C.-Z. Zhao, H.-J. Peng, J.-L. Shi, J.-Q. Huang, J. Wang, F. Wei, Q. Zhang, Adv. Mater. 2016, 28, 2155.
- 72F. Shen, F. Zhang, Y. Zheng, Z. Fan, Z. Li, Z. Sun, Y. Xuan, B. Zhao, Z. Lin, X. Gui, X. Han, Y. Cheng, C. Niu, Energy Storage Mater. 2018, 13, 323.
- 73G. Yang, Y. Li, Y. Tong, J. Qiu, S. Liu, S. Zhang, Z. Guan, B. Xu, Z. Wang, L. Chen, Nano Lett. 2019, 19, 494.
- 74J. Jeong, J. Chun, W.-G. Lim, W. B. Kim, C. Jo, J. Lee, Nanoscale 2020, 12, 11818.
- 75Q. Yun, Y.-B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q.-H. Yang, Adv. Mater. 2016, 28, 6932.
- 76H. Zhao, D. Lei, Y.-B. He, Y. Yuan, Q. Yun, B. Ni, W. Lv, B. Li, Q.-H. Yang, F. Kang, J. Lu, Adv. Energy Mater. 2018, 8, 1800266.
- 77L.-L. Lu, J. Ge, J.-N. Yang, S.-M. Chen, H.-B. Yao, F. Zhou, S.-H. Yu, Nano Lett. 2016, 16, 4431.
- 78L.-L. Lu, Y.-Y. Lu, Z.-J. Xiao, T.-W. Zhang, F. Zhou, T. Ma, Y. Ni, H.-B. Yao, S.-H. Yu, Y. Cui, Adv. Mater. 2018, 30, 1706745.
- 79C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Nat. Commun. 2015, 6, 8058.
- 80P. Xue, S. Liu, X. Shi, C. Sun, C. Lai, Y. Zhou, D. Sui, Y. Chen, J. Liang, Adv. Mater. 2018, 30, 1804165.
- 81S. Liu, X. Xia, Y. Zhong, S. Deng, Z. Yao, L. Zhang, X.-B. Cheng, X. Wang, Q. Zhang, J. Tu, Adv. Energy Mater. 2018, 8, 1702322.
- 82L. Liu, Y.-X. Yin, J.-Y. Li, N.-W. Li, X.-X. Zeng, H. Ye, Y.-G. Guo, L.-J. Wan, Joule 2017, 1, 563.
- 83T.-T. Zuo, X.-W. Wu, C.-P. Yang, Y.-X. Yin, H. Ye, N.-W. Li, Y.-G. Guo, Adv. Mater. 2017, 29, 1700389.
- 84P. Shi, T. Li, R. Zhang, X. Shen, X.-B. Cheng, R. Xu, J.-Q. Huang, X.-R. Chen, H. Liu, Q. Zhang, Adv. Mater. 2019, 31, 1807131.
- 85H. Lee, J. Song, Y.-J. Kim, J.-K. Park, H.-T. Kim, Sci. Rep. 2016, 6, 30830.
- 86S.-H. Wang, Y.-X. Yin, T.-T. Zuo, W. Dong, J.-Y. Li, J.-L. Shi, C.-H. Zhang, N.-W. Li, C.-J. Li, Y.-G. Guo, Adv. Mater. 2017, 29, 1703729.
- 87D. Zhang, A. Dai, M. Wu, K. Shen, T. Xiao, G. Hou, J. Lu, Y. Tang, ACS Energy Lett. 2020, 5, 180.
- 88X. Yan, Q. Zhang, W. Xu, Q. Xie, P. Liu, Q. Chen, H. Zheng, L. Wang, Z.-Z. Zhu, D.-L. Peng, J. Mater. Chem. A 2020, 8, 1678.
- 89S.-H. Hong, D.-H. Jung, J.-H. Kim, Y.-H. Lee, S.-J. Cho, S. H. Joo, H.-W. Lee, K.-S. Lee, S.-Y. Lee, Adv. Funct. Mater. 2020, 30, 1908868.
- 90F. Pouraghajan, H. Knight, M. Wray, B. Mazzeo, R. Subbaraman, J. Christensen, D. Wheeler, J. Electrochem. Soc. 2018, 165, A2644.
- 91I. V. Thorat, D. E. Stephenson, N. A. Zacharias, K. Zaghib, J. N. Harb, D. R. Wheeler, J. Power Sources 2009, 188, 592.
- 92Y. Zhang, W. Luo, C. Wang, Y. Li, C. Chen, J. Song, J. Dai, E. M. Hitz, S. Xu, C. Yang, Y. Wang, L. Hu, Proc. Natl. Acad. Sci. 2017, 114, 3584.
- 93Y.-C. Yin, Z.-L. Yu, Z.-Y. Ma, T.-W. Zhang, Y.-Y. Lu, T. Ma, F. Zhou, H.-B. Yao, S.-H. Yu, Natl. Sci. Rev. 2018, 6, 247.
- 94H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá, H. Wang, D. Mackanic, H.-G. Steinrück, W. Huang, Y. Li, A. Yang, J. Xie, Y. Wu, H. Wang, Y. Cui, Joule 2020, 4, 938.
- 95Y. He, X. Ren, Y. Xu, M. H. Engelhard, X. Li, J. Xiao, J. Liu, J. G. Zhang, W. Xu, C. Wang, Nat. Nanotechnol. 2019, 14, 1042.
- 96S. H. Yu, X. Huang, J. D. Brock, H. D. Abruna, J. Am. Chem. Soc. 2019, 141, 8441.
- 97K. H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez, N. P. Dasgupta, J. Mater. Chem. A 2017, 5, 11671.
- 98X. Shen, R. Zhang, X. Chen, X. B. Cheng, X. Y. Li, Q. Zhang, Adv. Energy Mater. 2020, 10, 1903645.
- 99R. Zhang, X. Shen, X. B. Cheng, Q. Zhang, Energy Storage Mater. 2019, 23, 556.
- 100Q. Li, S. Zhu, Y. Lu, Adv. Funct. Mater. 2017, 27, 1606422.
- 101A. Zhang, X. Fang, C. Shen, Y. Liu, C. Zhou, Nano Res. 2016, 9, 3428.
- 102G. J. H. Lim, Z. Lyu, X. Zhang, J. J. Koh, Y. Zhang, C. He, S. Adams, J. Wang, J. Ding, J. Mater. Chem. A 2020, 8, 9058.
- 103Z. Lyu, G. J. H. Lim, R. Guo, Z. Pan, X. Zhang, H. Zhang, Z. He, S. Adams, W. Chen, J. Ding, J. Wang, Energy Storage Mater. 2020, 24, 336.