A broadband continuous class-B/J power amplifier with novel output matching network
Angang Cai
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Ruohe Yao
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
Correspondence
Ruohe Yao, School of Microelectronics, South China University of Technology, Guangzhou 510640, China.
Email: [email protected]
Search for more papers by this authorYurong Liu
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorKuiwei Geng
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
China-Singapore International Joint Research Institute, Guangzhou, 510700 China
Search for more papers by this authorYingbin Zhu
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorAngang Cai
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Ruohe Yao
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
Correspondence
Ruohe Yao, School of Microelectronics, South China University of Technology, Guangzhou 510640, China.
Email: [email protected]
Search for more papers by this authorYurong Liu
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorKuiwei Geng
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
China-Singapore International Joint Research Institute, Guangzhou, 510700 China
Search for more papers by this authorYingbin Zhu
School of Microelectronics, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorAbstract
This paper presents a broadband continuous class-B/J power amplifier (PA) based on a novel output matching network (OMN). In order to realize a compact and broadband OMN design, a multiband harmonic control network (MHCN) with a simple structure consisting of a combination of open-circuited stubs and a microstrip radial stub (MRS) is designed, which is capable of tuning the second harmonic impedance at the upper and lower sideband frequencies and at the center frequency well and consumes low power. Also, a fundamental matching network (FMN) is designed by means of the simplified real frequency technique (SRFT) algorithm of the computer-aided program, which improves the efficiency of the circuit design. Both of them satisfy the requirements of a wideband PA and enhance the frequency-selective performance of the OMN. For validation purposes, practical measurements of the designed and fabricated continuous class-B/J PA with size of 61 × 51 mm2 have been carried out. The results show that at an operating frequency of 2.4–4.4 GHz, the 53%–73% drain efficiency (DE) at the output power of 38.4–42.4 dBm, and the maximum gain is 13.3 dB.
Open Research
DATA AVAILABILITY STATEMENT
Data are available on request from the authors.
REFERENCES
- 1Nguyen DA, Seo C, Park KS. A high-efficiency design for 2.0-2.9 GHz 5-W GaN HEMT class-E power amplifier using passive Q-constant non-Foster network. Microw Opt Technol Lett. 2020; 62(2): 615-624. doi:10.1002/mop.32068
- 2Chang R, Luo Y, Hong G. Design theory of broadband high-efficiency continuous class EF power amplifier based on new continuous factor. Int J Circuit Theory Appl. 2023; 51(12): 5570-5585. doi:10.1002/cta.3728
- 3Cripps S. RF Power Amplifiers for Wireless Communications. Second ed. ARTECH HOUSE; 2006.
- 4Mimis K, Morris KA, Bensmida S, McGeehan JP. Multichannel and wideband power amplifier design methodology for 4G communication systems based on hybrid class-J operation. IEEE Trans Microw Theory Tech. 2012; 60(8): 2562-2570. doi:10.1109/TMTT.2012.2198489
- 5Jain A, Hannurkar PR, Pathak SK, Sharma DK, Gupta AK. Investigation of class J continuous mode for high-power solid-state RF amplifier. IET Microw Antennas Propag. 2013; 7(8): 686-692. doi:10.1049/iet-map.2012.0649
- 6Alizadeh A, Hassanzadehyamchi S, Medi A. Integrated output matching networks for class–J/J−1 power amplifiers. IEEE Trans Circuits Syst I Regul Pap. 2019; 66(8): 2921-2934. doi:10.1109/TCSI.2019.2912007
- 7Zhuang Z, Wu Y, Kong M, Wang W. High-selectivity single-ended/balanced DC-block filtering impedance transformer and its application on power amplifier. IEEE Trans Circuits Syst I Regul Pap. 2020; 67(12): 4360-4369. doi:10.1109/TCSI.2020.3015883
- 8Eskandari S, Zhao Y, Helaoui M, Ghannouchi FM, Kouki AB. Continuous-mode inverse class-GF power amplifier with second-harmonic impedance optimization at device input. IEEE Trans Microw Theory Tech. 2021; 69(5): 2506-2518. doi:10.1109/TMTT.2021.3065130
- 9Wei X, Luo Y. A continuous class-EF power amplifier based on the general continuous mode design theory. Int J Circuit Theory Appl. 2023; 51(11): 5038-5049. doi:10.1002/cta.3688
- 10Liu C, Ghannouchi FM. Theory and design of high-efficiency broadband class-B/J power amplifiers with active second harmonic injection. IEEE Trans Microw Theory Tech. 2023; 71(10): 4357-4365. doi:10.1109/TMTT.2023.3260399
- 11Pang J, He S, Huang C, Dai Z, Li C, Peng J. A novel design of concurrent dual-band high efficiency power amplifiers with harmonic control circuits. IEEE Microw Wirel Compon Lett. 2016; 26(2): 137-139. doi:10.1109/LMWC.2016.2517334
- 12Park Y, Minn D, Kim S, Moon J, Kim B. A highly efficient power amplifier at 5.8 GHz using independent harmonic control. IEEE Microw Wirel Compon Lett. 2017; 27(1): 76-78. doi:10.1109/LMWC.2016.2630853
- 13Kim J, Hong SK, Oh J. Highly efficient power amplifier based on harmonic-controlled matching network. IEEE Microw Wirel Technol Lett. 2023; 33(1): 43-46. doi:10.1109/LMWC.2022.3196669
- 14Sheikhi A, Hemesi H. Analysis and design of the novel class-F/E power amplifier with series output filter. IEEE Trans Circuits Syst II Express Briefs. 2022; 69(3): 779-783. doi:10.1109/TCSII.2021.3112974
- 15Xia J, Zhu XW, Zhang L. A linearized 2–3.5 GHz highly efficient harmonic-tuned power amplifier exploiting stepped-impedance filtering matching network. IEEE Microw Wirel Compon Lett. 2014; 24(9): 602-604. doi:10.1109/LMWC.2014.2324752
- 16 BS Yarman (Ed). Design of Ultra Wideband Antenna Matching Networks: Via Simplified Real Frequency Technique. Springer; 2008. doi:10.1007/978-1-4020-8418-8
10.1007/978-1-4020-8418-8 Google Scholar
- 17Kilinc A, Yarman BS. High precision LC ladder synthesis part I: lowpass ladder synthesis via parametric approach. IEEE Trans Circuits Syst I Regul Pap. 2013; 60(8): 2074-2083. doi:10.1109/TCSI.2013.2239163
- 18Yarman BS, Kilinc A. High precision LC ladder synthesis part II: Immittance synthesis with transmission zeros at DC and infinity. IEEE Trans Circuits Syst I Regul Pap. 2013; 60(10): 2719-2729. doi:10.1109/TCSI.2013.2244315
- 19Yarman BS, Kopru R, Kumar N, Prakash C. High precision synthesis of a Richards immittance via parametric approach. IEEE Trans Circuits Syst I Regul Pap. 2014; 61(4): 1055-1067. doi:10.1109/TCSI.2013.2285913
- 20Yarman BS, Aksen A, Kopru R, Kumar N, Atilla DC, Chacko P. Computer aided Darlington synthesis of an all purpose immittance function. Istanb Univ - J Electr Electron Eng IU-JEEE. 2016; 16(1): 2027-2037.
- 21Sun Y, Zhu X. Broadband continuous class-F−1 amplifier with modified harmonic-controlled network for advanced long term evolution application. IEEE Microw Wirel Compon Lett. 2015; 25(4): 250-252. doi:10.1109/LMWC.2015.2400941
- 22Dai Z, He S, You F, Peng J, Chen P, Dong L. A new distributed parameter broadband matching method for power amplifier via real frequency technique. IEEE Trans Microw Theory Tech. 2015; 63(2): 449-458. doi:10.1109/TMTT.2014.2385087
- 23Köprü R. FSRFT—fast simplified real frequency technique via selective target data approach for broadband double matching. IEEE Trans Circuits Syst II Express Briefs. 2017; 64(2): 141-145. doi:10.1109/TCSII.2016.2557238
- 24Shi W, He S, Shi W, et al. Design of a C -band high efficiency power amplifier with compact harmonic control network. IEEE Microw Wirel Compon Lett. 2021; 31(9): 1059-1062. doi:10.1109/LMWC.2021.3096251
- 25Cai Q, Che W, Xue Q. High-efficiency power amplifier with a multiharmonic tuning network. IEEE Microw Wirel Compon Lett. 2021; 31(4): 389-392. doi:10.1109/LMWC.2021.3055235
- 26Liu W, Liu Q, Du G, Li G, Cheng D. Dual-band high-efficiency power amplifier based on a series of inverse continuous modes with second-harmonic control. IEEE Microw Wirel Technol Lett. 2023; 33(8): 1199-1202. doi:10.1109/LMWT.2023.3271903
- 27Liu M, Ma Z, Ma K, Fu H. A high-power GaAs amplifier with coupled bonding-wires-based harmonic control output matching network. IEEE Microw Wirel Technol Lett. 2023; 33(9): 1305-1308. doi:10.1109/LMWT.2023.3288753
- 28Kwon H, Lim H, Kang B. Design of 6–18 GHz wideband phase shifters using radial stubs. IEEE Microw Wirel Compon Lett. 2007; 17(3): 205-207. doi:10.1109/LMWC.2006.890481
- 29Jin-Ling Z, Hong-Ze W, Zhan-Qi Z, Xiong-Zhi Z. Research of SRFT improving and antenna broadband matching based on the IWO–LM algorithm. IET Microw Antennas Propag. 2018; 12(15): 2320-2325. doi:10.1049/iet-map.2018.5220
- 30Ludwig R, Bogdanov G. RF Circuit Design: Theory and Applications. Pearson Education; 2008.
- 31 Analog Devices. Adjacent channel leakage ratio (ACLR) derivation for general RF devices. Published September 14, 2006. Accessed April 11, 2024. https://www.analog.com/en/resources/technical-articles/adjacent-channel-leakage-ratio-aclr-derivation-for-general-rf-devices.html