Collaborative state estimation of lithium-ion battery based on multi-time scale low-pass filter forgetting factor recursive least squares - double extended Kalman filtering algorithm
Tao Long
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Search for more papers by this authorCorresponding Author
Shunli Wang
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Correspondence
Shunli Wang, School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Email: [email protected]
Search for more papers by this authorWen Cao
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Search for more papers by this authorPu Ren
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Search for more papers by this authorMingfang He
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Search for more papers by this authorCarlos Fernandez
School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
Search for more papers by this authorTao Long
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Search for more papers by this authorCorresponding Author
Shunli Wang
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Correspondence
Shunli Wang, School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Email: [email protected]
Search for more papers by this authorWen Cao
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Search for more papers by this authorPu Ren
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Search for more papers by this authorMingfang He
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Search for more papers by this authorCarlos Fernandez
School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
Search for more papers by this authorFunding information: National Natural Science Foundation of China, Grant/Award Numbers: 61801407, 62173281
Abstract
For the lithium battery management system and real-time safety monitoring, two issues are of great significance, namely, the ability to accurately update the model parameters in real time and to accurately estimate the state of charge and health. In this context, this thesis adopts the second-order RC equivalent circuit model and the forgetting factor recursive least squares - double extended Kalman filtering (FFRLS-DEKF) algorithm with multi-time scales and low-pass filter. Forgetting factor recursive least squares is applied to conduct online parameter identification, and the traditional double extended Kalman filtering algorithm is optimized to evaluate the state of charge and model parameters in the micro-scale and macro-scale. In this way, the error caused by two different characteristics is reduced, and a low-pass filter is added to optimize the fluctuation problem of the estimated value of the model parameters. According to the experiment results, the maximum error between the model simulation value and the actual value of the terminal voltage is 0.0459 V. If the initial value of the state of charge deviates from the actual value, the maximum errors under BBDST and HPPC conditions record 0.0235 and 0.0048, respectively, the forgetting factor recursive least squares - double extended Kalman filtering algorithm with multi-time scales and low-pass filter is able to track the true value within 40 s. Furthermore, the lithium-ion battery state of health both reaches 98% under the two conditions. In summary, the experimental analysis shows that the algorithm helps reduce the influence of initial values on the results, thereby reducing error accumulation and improving the robustness.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Chen Y, Dou A, Zhang Y. A review of recycling status of decommissioned lithium batteries. Front Mater Sci. 2021; 8: 1-12. doi:10.3389/fmats.2021.634667
- 2Hsieh Y-C, Yu L-R, Yang M-F. A charge equalization scheme for battery string with charging current allocation. Int J Circuit Theory Appl. 2021; 49(9): 2935-2945. doi:10.1002/cta.3052
- 3Kulova TL, Fateev VN, Seregina EA, Grigoriev AS. A brief review of post-lithium-ion batteries. Int J Electrochem Sci. 2020; 15(8): 7242-7259. doi:10.20964/2020.08.22
- 4Pourjafar S, Shayeghi H, Sedaghati F, Seyedshenava S, Blaabjerg F. A bidirectional multiport DC-DC converter applied for energy storage system with hybrid energy sources. Int J Circuit Theory Appl. 2021; 49(8): 2453-2478. doi:10.1002/cta.2988
- 5Du G, Lili ZH, Zhichao ZH, Yan FE, Dong WA, Zuoqiang DA. Overview of research on thermal safety of lithium-ion batteries. Energy Storage Sci Technol. 2019; 8(3): 500-505.
- 6Locorotondo E, Corti F, Pugi L, Berzi L, Reatti A, Lutzemberger G. Design of a wireless charging system for online battery spectroscopy. Energies. 2021; 14(1): 1-17. doi:10.3390/en14010218
- 7Lajara R, Perez-Solano JJ, Pelegri-Sebastia J. Predicting the batteries' state of health in wireless sensor networks applications. IEEE Trans Ind Electron. 2018; 65(11): 8936-8945. doi:10.1109/TIE.2018.2808925
- 8Zhao Q, Song L, Luo Z, Wang D. A study on combined multi-resonance converter for on-board charging of electric vehicles. Int J Circuit Theory Appl. 2021: 1-22. doi:10.1002/cta.3176
- 9Liu Y-Z, Yong WA, Cong-wei WA, Jun-ying WA, Jun-zhong WA. Recent advances in graphene materials used in Li-S batteries. New Carbon Mater. 2020; 35(1): 1-11.
- 10Liang H, Jianhua DU, Xin HA, Shizhi YA, Ran TU, Zhang R. A review of current research on the formation mechanism of lithium batteries. Energy Storage Science and Technology. 2021; 10(2): 647-657.
- 11Lu J, Liu Y, Long X, et al. Mathematical modeling and frequency-domain characteristics of a periodic pulse-discharged lithium-ion battery system. IEEE Trans Ind Appl. 2021; 57(2): 1801-1809. doi:10.1109/TIA.2020.3043220
- 12Liu Z, Li Z, Zhang J, Su L, Ge H. Accurate and efficient estimation of lithium-ion battery state of charge with alternate adaptive extended Kalman filter and ampere-hour counting methods. Energies. 2019; 12(4): 1024-1054. doi:10.3390/en12040757
- 13Xiong X, Wang SL, Fernandez C, Yu CM, Zou CY, Jiang C. A novel practical state of charge estimation method: an adaptive improved ampere-hour method based on composite correction factor. Int J Energy Res. 2020; 44(14): 11385-11404. doi:10.1002/er.5758
- 14Zhang L, Li X, Yang M, Chen W. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Mater. 2021; 41: 522-545. doi:10.1016/j.ensm.2021.06.033
- 15Reddy MV, Mauger A, Julien CM, Paolella A, Zaghib K. Brief history of early lithium-battery development. Materials. 2020; 13(8): 2-26. doi:10.3390/ma13081884
- 16Liu H, Hu F, Su J, Wei X, Qin R. Comparisons on Kalman-filter-based dynamic state estimation algorithms of power systems. IEEE Access. 2020; 8: 51035-51043. doi:10.1109/ACCESS.2020.2979735
- 17Mahboub V, Ebrahimzadeh S, Saadatseresht M, Faramarzi M. On robust constrained Kalman filter for dynamic errors-in-variables model. Surv Rev. 2020; 52(372): 253-260. doi:10.1080/00396265.2018.1547863
- 18Garcia RV, Pardal PCPM, Kuga HK, Zanardi MC. Nonlinear filtering for sequential spacecraft attitude estimation with real data: cubature Kalman filter, unscented Kalman filter and extended Kalman filter. Adv Space Res. 2019; 63(2): 1038-1050. doi:10.1016/j.asr.2018.10.003
- 19Zhengxin J, Qin S, Yujiang W, Hanlin W, Bingzhao G, Lin H. An immune genetic extended Kalman particle filter approach on state of charge estimation for lithium-ion battery. Energy. 2021; 230: 105-130. doi:10.1016/j.energy.2021.120805
- 20Yang X, Wang S, Xu W, Qiao J, Yu C, Fernandez C. Fuzzy adaptive singular value decomposition cubature Kalman filtering algorithm for lithium-ion battery state-of-charge estimation. Int J Circuit Theory Appl. 2021: 614-632. doi:10.1002/cta.3166
- 21Jiang C, Wang S, Wu B, Fernandez C, Xiong X, Coffie-Ken J. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter. Energy. 2021; 219: 256-287. doi:10.1016/j.energy.2020.119603
- 22Duan JD, Wang P, Ma W, Qiu X, Tian X, Fang S. State of charge estimation of lithium battery based on improved correntropy extended Kalman filter. Energies. 2020; 13(16): 557-598. doi:10.3390/en13164197
- 23Zheng T, Li ZH, Yangcheng HO, Wei CH. SOC estimation of aging lithium battery based on adaptive CKF. Energy Storage Science and Technology. 2020; 9(4): 1193-1199.
- 24Zhu Q, Xu M, Liu W, Zheng M. A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter. Energy. 2019; 187: 878-890. doi:10.1016/j.energy.2019.115880
- 25Liu Z, Qiu Y, Yang C, Ji J, Zhao Z. A state of charge estimation method for lithium-ion battery using PID compensator-based adaptive extended Kalman filter. Complexity. 2021; 2021: 1011-1101. doi:10.1155/2021/6665509
- 26Agudelo BO, Zamboni W, Monmasson E. Application domain extension of incremental capacity-based battery SoH indicators. Energy. 2021; 234: 545-601.
- 27Chang C, Wu Y, Jiang J, et al. Prognostics of the state of health for lithium-ion battery packs in energy storage applications. Energy. 2022; 239: 1200-1254. doi:10.1016/j.energy.2021.122189
- 28Tran MK, Mathew M, Janhunen S, et al. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. J Energy Storage. 2021; 43: 458-520.
- 29Wu J, Cui X, Zhang H, Lin M. Health prognosis with optimized feature selection for lithium-ion battery in electric vehicle applications. IEEE Trans Power Electron. 2021; 36(11): 12646-12655. doi:10.1109/TPEL.2021.3075558
- 30Chang C, Wang Q, Jiang J, Wu T. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm. J Energy Storage. 2021; 38: 566-600. doi:10.1016/j.est.2021.102570
- 31Hamar JC, Erhard SV, Canesso A, Kohlschmidt J, Olivain N, Jossen A. State-of-health estimation using a neural network trained on vehicle data. J Power Sources. 2021; 512: 789-802. doi:10.1016/j.jpowsour.2021.230493
- 32Jia JF, Wang K, Shi Y, Wen J, Pang X, Zeng J. A multi-scale state of health prediction framework of lithium-ion batteries considering the temperature variation during battery discharge. J Energy Storage. 2021; 42: 447-480. doi:10.1016/j.est.2021.103076
- 33Bian XL, Wei Z, He J, Yan F, Liu L. A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries. IEEE Trans Ind Electron. 2021; 68(12): 12173-12184. doi:10.1109/TIE.2020.3044779
- 34Bian XL, Wei Z, Li W, Pou J, Sauer DU, Liu L. State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis. IEEE Trans Power Electron. 2022; 37(2): 2226-2236.
- 35Wang JH, Liu S, Wang S, et al. Multiple indicators-based health diagnostics and prognostics for energy storage technologies using fuzzy comprehensive evaluation and improved multivariate grey model. IEEE Trans Power Electron. 2021; 36(11): 12309-12320. doi:10.1109/TPEL.2021.3075517
- 36Gou B, Xu Y, Feng X. An ensemble learning-based data-driven method for online state-of-health estimation of lithium-ion batteries. IEEE Trans Transp Electrification. 2021; 7(2): 422-436. doi:10.1109/TTE.2020.3029295
- 37Nagulapati VM, Lee H, Jung DW, Brigljevic B, Choi Y, Lim H. Capacity estimation of batteries: influence of training dataset size and diversity on data driven prognostic models. Reliab Eng Syst Saf. 2021; 216: 665-740. doi:10.1016/j.ress.2021.108048
- 38Zhang JA, Wang P, Gong Q, Cheng Z. SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model. J Power Electron. 2021; 21(11): 1712-1723. doi:10.1007/s43236-021-00307-8
- 39Qian KF, Liu XT. Hybrid optimization strategy for lithium-ion battery's state of charge/health using joint of dual Kalman filter and modified sine-cosine algorithm. J Energy Storage. 2021; 44: 741-850. doi:10.1016/j.est.2021.103319
- 40Sui X, He S, Vilsen SB, Meng J, Teodorescu R, Stroe DI. A review of non-probabilistic machine learning-based state of health estimation techniques for lithium-ion battery. Appl Energy. 2021; 300: 788-850. doi:10.1016/j.apenergy.2021.117346
- 41An Z, Maofei TI, Lin ZH, Xing CH, Yakun LI, Xin SI. SOC estimation of lithium battery based on adaptive untracked Kalman filter. Energy Storage Science and Technology. 2019; 8(5): 856-861.
- 42Ding Z, Deng T, Li Z, Yin Y. SOC estimation of lithium-ion battery based on ampere hour integral and unscented Kalman filter. Chin J Mech Eng. 2020; 31(15): 1823-1830.
- 43Ye P, Han X, Yang M, Zhang Y, Pei Y, Zhang X. Analysis and identification on the thevenin equivalent considering the correlation of source-grid-load. Proc Chin Soc Electr Eng. 2020; 40(9): 2842-2853.
- 44Guo X, Xu X, Geng J, Hua X, Gao Y, Liu Z. SOC estimation with an adaptive unscented Kalman filter based on model parameter optimization. Applied Sciences-Basel. 2019; 9(19): 784-820. doi:10.3390/app9194177
- 45Guo Y, Dai Y, Fu S. Estimation of battery SOC and SOH for urban rail vehicle composite power energy storage system. J Railw Sci Eng. 2020; 17(11): 2920-2928.
- 46Lai X, Gao W, Zheng Y, et al. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries. Electrochim Acta. 2019; 295: 1057-1066. doi:10.1016/j.electacta.2018.11.134
- 47Luo Y, Xiaoshuai ZH, Pengwei QI, Zengyue LI, Tao DE, Peiran LI. Second-order RC modeling and parameter identification of electric vehicle power battery. Energy Storage Science and Technology. 2019; 8(4): 738-744.
- 48Sun L. SOC estimation of Li-ion battery based on approximate second-order EKF. Battery Bimon. 2019; 49(5): 387-391.
- 49Maofei TI, Zhiguo AN, Xing CH, Lin ZH, Yakun LI, Xin SI. SOC estimation of lithium battery based online parameter identification and AEKF. Energy Storage Science and Technology. 2019; 8(4): 745-750.
- 50Wu X, Zhang X. Parameters identification of second order RC equivalent circuit model for lithium batteries. J Nanjing Univ Nat Sci. 2020; 56(5): 754-761.
- 51Xu Y, Hu M, Fu C, Cao K, Su Z, Yang Z. State of charge estimation for lithium-ion batteries based on temperature-dependent second-order RC model. Electronics. 2019; 8(9): 1424-1501. doi:10.3390/electronics8091012