Fast synthesis and bioconjugation of 68Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging
Juan Pellico
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Universidad Complutense de Madrid and CIBERES, 28040 Madrid, Spain
Search for more papers by this authorJesús Ruiz-Cabello
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Universidad Complutense de Madrid and CIBERES, 28040 Madrid, Spain
Search for more papers by this authorMarina Saiz-Alía
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorGilberto del Rosario
Technological Support Center (CAT), Universidad Rey Juan Carlos, Móstoles, Spain
Search for more papers by this authorSergio Caja
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorMaría Montoya
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorLaura Fernández de Manuel
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorM. Puerto Morales
Departamento de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain
Search for more papers by this authorLucia Gutiérrez
Departamento de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain
Search for more papers by this authorBeatriz Galiana
Physics Department, Universidad Carlos III, Av de la Universidad 40, 28911, Leganés, Madrid, Spain
Search for more papers by this authorJose A. Enríquez
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorCorresponding Author
Fernando Herranz
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Correspondence to: F. Herranz, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC). C/ Melchor Fernández-Almagro 3. 28029 Madrid, Spain. E-mail: [email protected]Search for more papers by this authorJuan Pellico
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Universidad Complutense de Madrid and CIBERES, 28040 Madrid, Spain
Search for more papers by this authorJesús Ruiz-Cabello
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Universidad Complutense de Madrid and CIBERES, 28040 Madrid, Spain
Search for more papers by this authorMarina Saiz-Alía
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorGilberto del Rosario
Technological Support Center (CAT), Universidad Rey Juan Carlos, Móstoles, Spain
Search for more papers by this authorSergio Caja
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorMaría Montoya
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorLaura Fernández de Manuel
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorM. Puerto Morales
Departamento de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain
Search for more papers by this authorLucia Gutiérrez
Departamento de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain
Search for more papers by this authorBeatriz Galiana
Physics Department, Universidad Carlos III, Av de la Universidad 40, 28911, Leganés, Madrid, Spain
Search for more papers by this authorJose A. Enríquez
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Search for more papers by this authorCorresponding Author
Fernando Herranz
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernández-Almagro 3, 28029 Madrid, Spain
Correspondence to: F. Herranz, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC). C/ Melchor Fernández-Almagro 3. 28029 Madrid, Spain. E-mail: [email protected]Search for more papers by this authorAbstract
Combination of complementary imaging techniques, like hybrid PET/MRI, allows protocols to be developed that exploit the best features of both. In order to get the best of these combinations the use of dual probes is highly desirable. On this sense the combination of biocompatible iron oxide nanoparticles and 68Ga isotope is a powerful development for the new generation of hybrid systems and multimodality approaches. Our objective was the synthesis and application of a chelator-free 68Ga-iron oxide nanotracer with improved stability, radiolabeling yield and in vivo performance in dual PET/MRI. We carried out the core doping of iron oxide nanoparticles, without the use of any chelator, by a microwave-driven protocol. The synthesis allowed the production of extremely small (2.5 nm) 68Ga core-doped iron oxide nanoparticles. The microwave approach allowed an extremely fast synthesis with a 90% radiolabeling yield and T1 contrast in MRI. With the same microwave approach the nano-radiotracer was functionalized in a fast and efficient way. We finally evaluated these dual targeting nanoparticles in an angiogenesis murine model by PET/MR imaging. Copyright © 2016 John Wiley & Sons, Ltd.
Supporting Information
Filename | Description |
---|---|
cmmi1681-sup-0001-Supplementary.docxWord 2007 document , 17.5 MB |
Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Louie A. Multimodality imaging probes: design and challenges. Chem Rev 2010; 110: 3146–3195. doi:10.1021/cr9003538.
- 2Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol 2010; 65: 500–516. doi:10.1016/j.crad.2010.03.011.
- 3Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, Thielscher A, Kneilling M, Lichy MP, Eichner M, Klingel K, Reischl G, Widmaier S, Röcken M, Nutt RE, Machulla HJ, Uludag K, Cherry SR, Claussen CD, Pichler BJ. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008; 14: 459–465. doi:10.1038/nm1700.
- 4Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science (80- ) 2012; 338: 903–910. doi:10.1126/science.1226338.
- 5Perez-Medina C, Abdel-Atti D, Zhang Y, Longo VA, Irwin CP, Binderup T, Ruiz-Cabello J, Fayad ZA, Lewis JS, Mulder WJ, Reiner T. A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. J Nucl Med 2014; 55: 1706–1711. doi:10.2967/jnumed.114.141861.
- 6Guo W, Sun X, Jacobson O, Yan X, Min K, Srivatsan A, Niu G, Kiesewetter DO, Chang J, Chen X. Intrinsically radioactive [64 Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable cerenkov luminescence. ACS Nano 2015; 9: 488–495. doi:10.1021/nn505660r.
- 7Hu H, Huang P, Weiss OJ, Yan X, Yue X, Zhang MG, Tang Y, Nie L, Ma Y, Niu G, Wu K, Chen X. PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters. Biomaterials 2014; 35: 9868–9876. doi:10.1016/j.biomaterials.2014.08.038.
- 8Morgat C, Hindié E, Mishra AK, Allard M, Fernandez P. Gallium-68: chemistry and radiolabeled peptides exploring different oncogenic pathways. Cancer Biother Radiopharm 2013; 28: 85–97. doi:10.1089/cbr.2012.1244.
- 9Vorster M, Maes A, Van deWiele C, Sathekge M. Gallium-68: a systematic review of its nononcological applications. Nucl Med Commun 2013; 34: 834–854. doi:10.1097/MNM.0b013e32836341e5.
- 10Hu F, Jia Q, Li Y, Gao M. Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T 1 - and T 2 -weighted magnetic resonance imaging. Nanotechnology 2011; 22. doi:10.1088/0957-4484/22/24/245604.
- 11Yu T, Moon J, Park J, Park Y II, Na HB, Kim BH, Song IC, Moon WK, Hyeon T. Various-shaped uniform Mn 3 O 4 nanocrystals synthesized at low temperature in air atmosphere. Chem Mater 2009; 21: 2272–2279. doi:10.1021/cm900431b.
- 12Hannecart A, Stanicki D, Vander Elst L, Muller RN, Lecommandoux S, Thévenot J, Bonduelle C, Trotier A, Massot P, Miraux S, Sandre O, Laurent S. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. Nanoscale 2015; 7: 3754–3767. doi:10.1039/C4NR07064J.
- 13Taboada E, Rodríguez E, Roig A, Oró J, Roch A, Muller RN. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. evaluation as potential T 1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 2007; 23: 4583–4588. doi:10.1021/la063415s.
- 14Kim BH, Lee N, Kim H, An K, Park Y II, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park J-G, Ahn T-Y, Kim Y-W, Moon WK, Choi SH, Hyeon T. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 2011; 133: 12624–12631. doi:10.1021/ja203340u.
- 15Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. J Colloid Interface Sci 2014; 417: 159–165. doi:10.1016/j.jcis.2013.11.020.
- 16Szpak A, Fiejdasz S, Prendota W, Strączek T, Kapusta C, Szmyd J, Nowakowska M, Zapotoczny S. T1–T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanoparticle Res 2014; 16: 2678. doi:10.1007/s11051-014-2678-6.
- 17Lidström P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis –a review. Tetrahedron 2001; 57: 9225–9283. doi:10.1016/S0040-4020(01)00906-1.
- 18Hayes BL. Microwave synthesis: chemistry at the speed of light. CEM Pub. 2002.
- 19Pellico J, Lechuga-Vieco AV, Benito M, García-Segura JM, Fuster V, Ruiz-Cabello J, Herranz F. Microwave-driven synthesis of bisphosphonate nanoparticles allows in vivo visualisation of atherosclerotic plaque. RSC Adv 2015; 5: 1661–1665. doi:10.1039/C4RA13824D.
- 20Acarbas O, Ozenbas M. Preparation of iron oxide nanoparticles by microwave synthesis and their characterization. J Nanosci Nanotechnol 2008; 8: 655–659.
- 21Osborne EA, Atkins TM, Gilbert DA, Kauzlarich SM, Liu K, Louie AY. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology 2012; 23. doi:10.1088/0957-4484/23/21/215602.
- 22Carenza E, Barceló V, Morancho A, Montaner J, Rosell A, Roig A. Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells. Acta Biomater 2014. doi:10.1016/j.actbio.2014.04.010.
- 23Bilecka I, Djerdj I, Niederberger M. One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem Commun 2008: 886–888. doi:10.1039/B717334B.
- 24Hu H, Yang H, Huang P, Cui D, Peng Y, Zhang J, Lu F, Lian J, Shi D. Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles. Chem Commun 2010; 46: 3866–3868. doi:10.1039/B927321B.
- 25Choi J, Park JC, Nah H, Woo S, Oh J, Kim KM, Cheon GJ, Chang Y, Yoo J, Cheon J. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed Engl 2008; 47: 6259–6262. doi:10.1002/anie.200801369.
- 26Stelter L, Pinkernelle JG, Michel R, Schwartländer R, Raschzok N, Morgul MH, Koch M, Denecke T, Ruf J, Bäumler H, Jordan A, Hamm B, Sauer IM, Teichgräber U. Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3T MRI, small animal PET, and fluorescence imaging. Mol Imaging Biol MIB Off Publ Acad Mol Imaging 2010; 12: 25–34. doi:10.1007/s11307-009-0237-9.
- 27Glaus C, Rossin R, Welch MJ, Bao G. In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 2010; 21: 715–722. doi:10.1021/bc900511j.
- 28Nahrendorf M, Keliher E, Marinelli B, Leuschner F, Robbins CS, Gerszten RE, Pittet MJ, Swirski FK, Weissleder R. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography –computed tomography. Arterioscler Thromb Vasc Biol 2011; 31: 750–757. doi:10.1161/ATVBAHA.110.221499.
- 29Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S, Hernandez R, Meyerand ME, Barnhart TE, Cai W. Chelator-free synthesis of a dual-modality PET/MRI agent. Angew Chemie 2013; 52: 13319–13323. doi:10.1002/anie.201306306.
- 30Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, Wooley KL, Liu Y. Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew Chemie Int Ed 2014; 53: 156–159. doi:10.1002/anie.201308494.
- 31Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, Meyerand ME, Nickles RJ, Cai W. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv Mater 2014; 26: 5119–5123. doi:10.1002/adma.201401372.
- 32Wong RM, Gilbert DA, Liu K, Louie AY. Rapid size-controlled synthesis of dextran-coated, 64 cu-doped iron oxide nanoparticles. ACS Nano 2012; 6: 3461–3467. doi:10.1021/nn300494k.
- 33Barth A. The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 2000; 74: 141–173.