Synthesis of Multiwalled Carbon Nanotube Modified BiOCl Microspheres with Enhanced Visible-Light Response Photoactivity
Sheng Yin
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Additional corresponding author: Dr. S. Yin, [email protected]These authors contributed equally to this work.Search for more papers by this authorJun Di
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
These authors contributed equally to this work.Search for more papers by this authorMing Li
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorWenmin Fan
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorJiexiang Xia
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorHui Xu
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorYilin Sun
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorCorresponding Author
Huaming Li
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Correspondence: Professor Huaming Li, School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
E-mail:[email protected]
Search for more papers by this authorSheng Yin
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Additional corresponding author: Dr. S. Yin, [email protected]These authors contributed equally to this work.Search for more papers by this authorJun Di
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
These authors contributed equally to this work.Search for more papers by this authorMing Li
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorWenmin Fan
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorJiexiang Xia
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorHui Xu
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorYilin Sun
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Search for more papers by this authorCorresponding Author
Huaming Li
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China
Correspondence: Professor Huaming Li, School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
E-mail:[email protected]
Search for more papers by this authorAbstract
A facile approach for the preparation of multiwalled carbon nanotube (MWCNT)/BiOCl microspheres has been demonstrated by a ionic liquid assisted solvothermal method. The MWCNT/BiOCl heterostructures were fabricated by dispersing MWCNT onto the surface of BiOCl. The as-synthesized samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, photoluminescence, and the specific surface area. The MWCNT/BiOCl microspheres showed higher photocatalytic activity for the degradation of rhodamine B than pure BiOCl under visible-light irradiation. The optimal MWCNT content for the photocatalytic activity of the MWCNT/BiOCl microspheres was 0.1 wt%. The introduction of MWCNT facilitated the separation of electron–hole pairs, and thus led to the improvement of photocatalytic activity. A possible photocatalytic mechanism of MWCNT/BiOCl composites was also proposed.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
clen201500418-sup-0001-SupFig-S1.pdf97.1 KB | Supporting Figures |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 1972, 238(5358), 37–38.
- 2 J. Miao, H. B. Lu, D. Habibi, M. H. Khiadani, L. C. Zhang, Photocatalytic Degradation of the Azo Dye Acid Red 14 in Nanosized TiO2 Suspension Under Simulated Solar Light, Clean − Soil, Air, Water 2015, 43(7), 1037–1043.
- 3 F. Fresno, R. Portela, S. Suárez, J. M. Coronado, Photocatalytic Materials: Recent Achievements and Near Future Trends, J. Mater. Chem. A 2014, 2(9), 2863–2884.
- 4 J. Di, J. X. Xia, S. Yin, H. Xu, M. Q. He, H. M. Li, L. Xu, et al., A g-C3N4/BiOBr Visible-Light-Driven Composite: Synthesis via a Reactable Ionic Liquid and Improved Photocatalytic Activity, RSC Adv. 2013, 3(42), 19624–19631.
- 5 J. Di, J. X. Xia, S. Yin, H. Xu, L. Xu, Y. G. Xu, M. Q. He, et al., Preparation of Sphere-Like g-C3N4/BiOI Photocatalysts via a Reactable Ionic Liquid for Visible-Light-Driven Photocatalytic Degradation of Pollutants, J. Mater. Chem. A 2014, 2(15), 5340–5351.
- 6 J. Di, J. X. Xia, M. X. Ji, H. P. Li, H. Xu, H. M. Li, et al. The Synergistic Role of Carbon Quantum Dots for the Improved Photocatalytic Performance of Bi2MoO6, Nanoscale 2015, 7(26), 11433–11443.
- 7 J. Li, Y. Yu, L. Z. Zhang, Bismuth Oxyhalide Nanomaterials: Layered Structures Meet Photocatalysis, Nanoscale 2014, 6(15), 8473–8488.
- 8 J. Di, J. X. Xia, Y. P. Ge, L. Xu, H. Xu, M. Q. He, Q. Zhang, et al., Reactable Ionic Liquid-Assisted Rapid Synthesis of BiOI Hollow Microspheres at Room Temperature with Enhanced Photocatalytic Activity, J. Mater. Chem. A 2014, 2(38), 15864–15874.
- 9 J. X. Xia, S. Yin, H. M. Li, H. Xu, Y. S. Yan, Q. Zhang, Self-Assembly and Enhanced Photocatalytic Properties of BiOI Hollow Microspheres via a Reactable Ionic Liquid, Langmuir 2011, 27(3), 1200–1206.
- 10 J. Di, J. X. Xia, M. X. Ji, B. Wang, S. Yin, Q. Zhang, Z. G. Chen, et al., Advanced Photocatalytic Performance of Graphene-Like BN Modified BiOBr Flower-Like Materials for the Removal of Pollutants and Mechanism Insight, Appl. Catal. B 2016, 183, 254–262.
- 11 H. P. Li, J. Y. Liu, X. F. Liang, W. G. Hou, X. T. Tao, Enhanced Visible Light Photocatalytic Activity of Bismuth Oxybromide Lamellas with Decreasing Lamella Thicknesses, J. Mater. Chem. A 2014, 2(23), 8926–8932.
- 12 J. X. Xia, S. Yin, H. M. Li, H. Xu, L. Xu, Y. G. Xu, Improved Visible Light Photocatalytic Activity of Sphere-Like BiOBr Hollow and Porous Structures Synthesized via a Reactable Ionic Liquid, Dalton Trans. 2011, 40(19), 5249–5258.
- 13 J. Jiang, K. Zhao, X. Y. Xiao, L. Z. Zhang, Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets, J. Am. Chem. Soc. 2012, 134(10), 4473–4476.
- 14 J. Di, J. X. Xia, M. X. Ji, S. Yin, H. P. Li, H. Xu, Q. Zhang, et al., Controllable Synthesis of Bi4O5Br2 Ultrathin Nanosheets for Photocatalytic Removal of Ciprofloxacin and Mechanism Insight, J. Mater. Chem. A 2015, 3, 15108–15118.
- 15 K. Zhao, L. Z. Zhang, J. J. Wang, Q. X. Li, W. W. He, J. J. Yin, Surface Structure-Dependent Molecular Oxygen Activation of BiOCl Single-Crystalline Nanosheets, J. Am. Chem. Soc. 2013, 135(42), 15750–15753.
- 16 H. F. Cheng, B. B. Huang, Y. Dai, Engineering BiOX (X=Cl, Br, I) Nanostructures for Highly Efficient Photocatalytic Applications, Nanoscale 2014, 6(4), 2009–2026.
- 17 M. L. Guan, C. Xiao, J. Zhang, S. J. Fan, R. An, Q. M. Cheng, J. F. Xie, et al., Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets, J. Am. Chem. Soc. 2013, 135(28), 10411–10417.
- 18 J. X. Xia, J. Zhang, S. Yin, H. M. Li, H. Xu, L. Xu, Q. Zhang, Advanced Visible Light Photocatalytic Properties of BiOCl Micro/Nanospheres Synthesized via Reactable Ionic Liquids, J. Phys. Chem. Solids 2013, 74(2), 298–304.
- 19 J. Y. Xiong, Z. B. Jiao, G. X. Lu, W. Ren, J. H. Ye, Y. P. Bi, Facile and Rapid Oxidation Fabrication of BiOCl Hierarchical Nanostructures with Enhanced Photocatalytic Properties, Chem. Eur. J 2013, 19(29), 9472–9475.
- 20 Y. Bai, P. Q. Wang, J. Y. Liu, X. J. Liu, Enhanced Photocatalytic Performance of Direct Z-Scheme BiOCl-g-C3N4 Photocatalysts, RSC Adv. 2014, 4(37), 19456–19461.
- 21 Y. Yu, C. Y. Cao, H. Liu, P. Li, F. F. Wei, Y. Jiang, W. G. Song, A Bi/BiOCl Heterojunction Photocatalyst with Enhanced Electron-Hole Separation and Excellent Visible Light Photodegrading Activity, J. Mater. Chem. A 2014, 2(6), 1677–1681.
- 22 J. Di, J. X. Xia, S. Yin, H. Xu, L. Xu, Y. G. Xu, M. Q. He, et al., One-Pot Solvothermal Synthesis of Cu-Modified BiOCl via a Cu-Containing Ionic Liquid and its Visible-Light Photocatalytic Properties, RSC Adv. 2014, 4(27), 14281–14290.
- 23 J. X. Xia, L. Xu, J. Zhang, S. Yin, H. M. Li, H. Xu, J. Di, Improved Visible Light Photocatalytic Properties of Fe/BiOCl Microspheres Synthesized via Self-Doped Reactable Ionic Liquids, CrystEngComm 2013, 15(46), 10132–10141.
- 24 H. Li, L. Z. Zhang, Oxygen Vacancy Induced Selective Silver Deposition on the {001} Facets of BiOCl Single-Crystalline Nanosheets for Enhanced Cr(VI) and Sodium Pentachlorophenate Removal under Visible Light, Nanoscale 2014, 6(14), 7805.
- 25 Y. Y. Cai, P. P. Wang, Y. X. Ye, J. Liu, Z. F. Tian, Y. S. Liu, C. H. Liang, Grafting BiOCl Nanosheets onto TiO2 Tubular Arrays to Form a Hierarchical Structure with Improved Photocatalytic Performance, RSC Adv. 2013, 3(41), 19064–19069.
- 26 H. F. Cheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, A Controlled Anion Exchange Strategy to Synthesize Bi2S3 Nanocrystals/BiOCl Hybrid Architectures with Efficient Visible Light Photoactivity, Chem. Commun. 2012, 48(1), 97–99.
- 27 F. Chang, Y. C. Xie, J. Zhang, J. Chen, C. L. Li, J. Wang, J. R. Luo, et al., Construction of Exfoliated g-C3N4 Nanosheets-BiOCl Hybrids with Enhanced Photocatalytic Performance, RSC Adv. 2014, 4(54), 28519–28528.
- 28 F. T. Li, Q. Wang, X. J. Wang, B. Li, Y. J. Hao, R. H. Liu, D. S. Zhao, In Situ One-Step Synthesis of Novel BiOCl/Bi24O31Cl10 Heterojunctions via Self-combustion of Ionic Liquid with Enhanced Visible-Light Photocatalytic Activities, Appl. Catal. B 2014, 150–151, 574–584.
- 29 L. Q. Ye, J. Y. Liu, C. Q. Gong, L. H. Tian, T. Y. Peng, L. Zan, Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X = Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonance and Z-Scheme Bridge, ACS Catal. 2012, 2(8), 1677–1683.
- 30 Y. Cong, X. K. Li, Y. Qin, Z. J. Dong, G. M. Yuan, Z. W. Cui, X. J. Lai, Carbon-Doped TiO2 Coating on Multiwalled Carbon Nanotubes with Higher Visible Light Photocatalytic Activity, Appl. Catal. B 2011, 107(1–2), 128–134.
- 31 O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Synthesis of Titania/Carbon Nanotube Heterojunction Arrays for Photoinactivation of E. Coli in Visible Light Irradiation, Carbon 2009, 47(14), 3280–3287.
- 32 K. E. Tettey, M. Q. Yee, D. Lee, Photocatalytic and Conductive MWCNT/TiO2 Nanocomposite Thin Films, ACS Appl. Mater. Interf. 2010, 2(9), 2646–2652.
- 33 K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic Carbon-Nanotube-TiO2 Composites, Adv. Mater. 2009, 21(21), 2233–2239.
- 34 S. M. Miranda, G. E. Romanos, V. Likodimos, R. R. N. Marques, E. P. Favvas, F. K. Katsaros, K. L. Stefanopoulos, et al., Pore Structure, Interface Properties and Photocatalytic Efficiency of Hydration/Dehydration Derived TiO2/CNT Composites, Appl. Catal. B 2014, 147, 65–81.
- 35 L. Ge, C. C. Han, Synthesis of MWNTs/g-C3N4 Composite Photocatalysts with Efficient Visible Light Photocatalytic Hydrogen Evolution Activity, Appl. Catal. B 2012, 117, 268–274.
- 36 Y. G. Xu, H. Xu, L. Wang, J. Yan, H. M. Li, Y. H. Song, L. Y. Huang, et al., The CNT Modified White C3N4 Composite Photocatalyst with Enhanced Visible-Light Response Photoactivity, Dalton Trans. 2013, 42(21), 7604–7613.
- 37 H. Xu, C. Wang, Y. H. Song, J. X. Zhu, Y. G. Xu, J. Yan, Y. X. Song, et al., CNT/Ag3PO4 Composites with Highly Enhanced Visible Light Photocatalytic Activity and Stability, Chem. Eng. J. 2014, 241, 35–42.
- 38 J. X. Xia, J. Di, S. Yin, H. M. Li, L. Xu, Y. G. Xu, C. Y. Zhang, et al., Improved Visible Light Photocatalytic Activity of MWCNT/BiOBr Composite Synthesized via a Reactable Ionic Liquid, Ceram. Int. 2014, 40(3), 4607–4616.
- 39 M. H. Su, C. He, L. F. Zhu, Z. J. Sun, C. Shan, Q. Zhang, D. Shu, et al., Enhanced Adsorption and Photocatalytic Activity of BiOI-MWCNT Composites Towards Organic Pollutants in Aqueous Solution, J. Hazard. Mater. 2012, 229, 72–82.
- 40 Y. G. Xu, H. Xu, J. Yan, H. M. Li, L. Y. Huang, Q. Zhang, C. J. Huang, et al., A Novel Visible-Light-Response Plasmonic Photocatalyst CNT/Ag/AgBr and its Photocatalytic Properties, Phys. Chem. Chem. Phys. 2013, 15(16), 5821–5830.
- 41 T. Y. Peng, P. Zeng, D. N. Ke, X. J. Liu, X. H. Zhang, Hydrothermal Preparation of Multiwalled Carbon Nanotubes (MWCNTs)/CdS Nanocomposite and its Efficient Photocatalytic Hydrogen Production under Visible Light Irradiation, Energy Fuels 2011, 25(5), 2203–2210.
- 42 J. Di, J. X. Xia, Y. P. Ge, L. Xu, H. Xu, J. Chen, M. Q. He, et al., Facile Fabrication and Enhanced Visible Light Photocatalytic Activity of Few-layer MoS2 Coupled BiOBr Microspheres, Dalton Trans. 2014, 43(41), 15429–15438.
- 43 J. X. Xia, J. Di, S. Yin, H. Xu, J. Zhang, Y. G. Xu, L. Xu, et al., Facile Fabrication of the Visible-Light-Driven Bi2WO6/BiOBr Composite with Enhanced Photocatalytic Activity, RSC Adv. 2014, 4(1), 82–90.
- 44 J. Di, J. X. Xia, Y. P. Ge, H. P. Li, H. Y. Ji, H. Xu, Q. Zhang, et al., Novel Visible-Light-Driven CQDs/Bi2WO6 Hybrid Materials with Enhanced Photocatalytic Activity Toward Organic Pollutants Degradation and Mechanism Insight, Appl. Catal. B 2015, 168–169, 51–61.
- 45 Y. Bai, P. Q. Wang, J. Y. Liu, X. J. Liu, Enhanced Photocatalytic Performance of Direct Z-Scheme BiOCl-g-C3N4 Photocatalysts, RSC Adv. 2014, 4(37), 19456–19461.
- 46 H. Li, J. Shang, Z. H. Ai, L. Z. Zhang, Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets, J. Am. Chem. Soc. 2015, 137, 6393–6399.
- 47 H. Li, J. G. Shi, K. Zhao, L. Z. Zhang, Sustainable Molecular Oxygen Activation with Oxygen Vacancies on the {001} Facets of BiOCl Nanosheets under Solar Light, Nanoscale 2014, 6, 14168–14173.
- 48 J. Di, J. X. Xia, M. X. Ji, B. Wang, S. Yin, Q. Zhang, Z. G. Chen, et al., Carbon Quantum Dots Modified BiOCl Ultrathin Nanosheets with Enhanced Molecular Oxygen Activation Ability for Broad Spectrum Photocatalytic Properties and Mechanism Insight, ACS Appl. Mater. Interf. 2015, 7, 20111–20123.