Simultaneously Optimizing Molecular Stacking and Phase Separation via Solvent-Solid Hybrid Additives Enables Organic Solar Cells with over 19% Efficiency†
Haicui Liu
Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorCorresponding Author
Keli Shi
Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorJing Lai
Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorSeonghun Jeong
School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919 South Korea
Search for more papers by this authorCan Zhu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Jinyuan Zhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorZhi-Guo Zhang
College of Materials Science and Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Changduk Yang
School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919 South Korea
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Beibei Qiu
Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorYongfang Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorHaicui Liu
Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorCorresponding Author
Keli Shi
Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorJing Lai
Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorSeonghun Jeong
School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919 South Korea
Search for more papers by this authorCan Zhu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Jinyuan Zhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorZhi-Guo Zhang
College of Materials Science and Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Changduk Yang
School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919 South Korea
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Beibei Qiu
Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorYongfang Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this author† Dedicated to the Special Issue of Emerging Investigators in 2023.
Comprehensive Summary
Given the crucial role of film morphology in determining the photovoltaic parameters of organic solar cells (OSCs), solvent or solid additives have been widely used to realize fine-tuned film morphological features to further improve the performance of OSCs. However, most high-performance OSCs are processed only using single component additive, either solvent additive or solid additive. Herein, a simple molecular building block, namely thieno[3,4-b]thiophene (TT), was utilized as the solid additive to coordinate with the widely used solvent additive, 1-chloronaphthalene (CN), to modulate the film morphology. Systematical investigations revealed that the addition of TT could prevent the excessive aggregation to form a delicate nanoscale phase separation, leading to enhanced charge transport and suppressed charge recombination, as well as superior photovoltaic performance. Consequently, the PM6:Y6 based OSCs with the addition of hybrid additive of CN + TT demonstrated the optimal PCE of 18.52%, with a notable FF of 79.6%. More impressively, the PM6:Y6:PC71BM based ternary OSCs treated with the hybrid additives delivered a remarkable efficiency of 19.05%, which ranks among the best values of Y6-based OSCs reported so far. This work highlights the importance of the hybrid additive strategy in regulating the active layer morphology towards significantly improved performance.
Supporting Information
Filename | Description |
---|---|
cjoc202400685-sup-0001-supinfo.pdfPDF document, 792.5 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Li, Y. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption. Acc. Chem. Res. 2012, 45, 723–733.
- 2 Wang, J.; Ochiai, Y.; Wu, N.; Adachi, K.; Inoue, D.; Hashizume, D.; Kong, D.; Matsuhisa, N.; Yokota, T.; Wu, Q.; Ma, W.; Sun, L.; Xiong, S.; Du, B.; Wang, W.; Shih, C.-J.; Tajima, K.; Aida, T.; Fukuda, K.; Someya, T. Intrinsically Stretchable Organic Photovoltaics by Redistributing Strain to Pedot:Pss with Enhanced Stretchability and Interfacial Adhesion. Nat. Commun. 2024, 15, 4902.
- 3 Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y. A Low Cost and High Performance Polymer Donor Material for Polymer Solar Cells. Nat. Commun. 2018, 9, 743.
- 4 Ren, J.; Bi, P.; Zhang, J.; Liu, J.; Wang, J.; Xu, Y.; Wei, Z.; Zhang, S.; Hou, J. Molecular Design Revitalizes the Low-Cost PTV-Polymer for Highly Efficient Organic Solar Cells. Natl. Sci. Rev. 2021, 8, nwab031.
- 5 Xia, R. X.; Brabec, C. J.; Yip, H. L.; Cao, Y. High-Throughput Optical Screening for Efficient Semitransparent Organic Solar Cells. Joule 2019, 3, 2241–2254.
- 6 Ravishankar, E.; Booth, R. E.; Saravitz, C.; Sederoff, H.; Ade, H. W.; O’Connor, B. T. Achieving Net Zero Energy Greenhouses by Integrating Semitransparent Organic Solar Cells. Joule 2020, 4, 490–506.
- 7 Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B.; Luo, Z.; Yang, W.; Hu, Z.; Guo, J.; Shi, M.; Yang, C.; Huang, F.; Li, Y.; Min, J. A Layer- by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule 2020, 4, 407–419.
- 8 Andersen, T. R.; Dam, H. F.; Hosel, M.; Helgesen, M.; Carle, J. E.; Larsen-Olsen, T. T.; Gevorgyan, S. A.; Andreasen, J. W.; Adams, J.; Li, N.; Machui, F.; Spyropoulos, G. D.; Ameri, T.; Lemaitre, N.; Legros, M.; Scheel, A.; Gaiser, D.; Kreul, K.; Berny, S.; Lozman, O. R.; Nordman, S.; Valimaki, M.; Vilkman, M.; Sondergaard, R. R.; Jorgensen, M.; Brabec, C. J.; Krebs, F. C. Scalable, Ambient Atmosphere Roll-to-Roll Manufacture of Encapsulated Large Area, Flexible Organic Tandem Solar Cell Modules. Energy Environ. Sci. 2014, 7, 2925–2933.
- 9 Zhang, Z.-G.; Li, Y. Side-Chain Engineering of High-Efficiency Conjugated Polymer Photovoltaic Materials. Sci. China Chem. 2015, 58, 192–209.
- 10 Bai, Q.; Liang, Q.; Liu, Q.; Liu, B.; Guo, X.; Niu, L.; Sun, H. PY-IT, an Excellent Polymer Acceptor. Chin. J. Chem. 2023, 41, 3714–3728.
- 11 Xu, T.; Luo, Z.; Ma, R.; Chen, Z.; Dela Peña, T. A.; Liu, H.; Wei, Q.; Li, M.; Zhang, C. e.; Wu, J.; Lu, X.; Li, G.; Yang, C. High-Performance Organic Solar Cells Containing Pyrido[2,3-b]Quinoxaline-Core-Based Small-Molecule Acceptors with Optimized Orbit Overlap Lengths and Molecular Packing. Angew. Chem. Int. Ed. 2023, 62, 202304127
- 12 Luo, Z. H.; Ma, R. J.; Yu, J. W.; Liu, H.; Liu, T.; Ni, F.; Hu, J. H.; Zou, Y.; Zeng, A. P.; Su, C. J.; Jeng, U. S.; Lu, X. H.; Gao, F.; Yang, C. L.; Yan, H. Heteroheptacene-Based Acceptors with Thieno[3,2-b]Pyrrole Yield High-Performance Polymer Solar Cells. Natl. Sci. Rev. 2022, 9, nwac076.
- 13 Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151.
- 14 Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C.-C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-Junction Organic Solar Cells with over 19% Efficiency Enabled by a Refined Double-Fibril Network Morphology. Nat. Mater. 2022, 21, 656.
- 15 Yao, J.; Qiu, B.; Zhang, Z. G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; Xiao, M.; Meng, L.; Li, Y. Cathode Engineering with Perylene-Diimide Interlayer Enabling over 17% Efficiency Single-Junction Organic Solar Cells. Nat. Commun. 2020, 11, 2726.
- 16 Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17, 119–128.
- 17 Yao, H.; Ye, L.; Zhang, H.; Li, S.; Zhang, S.; Hou, J. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chem. Rev. 2016, 116, 7397–7457.
- 18 Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420.
- 19 Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination. Adv. Mater. 2022, 34, 2109516.
- 20 Gao, W.; Qi, F.; Peng, Z.; Lin, F. R.; Jiang, K.; Zhong, C.; Kaminsky, W.; Guan, Z.; Lee, C. S.; Marks, T. J.; Ade, H.; Jen, A. K. Y. Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor. Adv. Mater. 2022, 34, 2202089.
- 21 Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Recent Progress in Organic Solar Cells (Part II Device Engineering). Sci. China Chem. 2022, 65, 1457–1497.
- 22 Liu, Y. H.; Li, B. W.; Ma, C. Q.; Huang, F.; Feng, G. T.; Chen, H. Z.; Hou, J. H.; Yan, L. P.; Wei, Q. Y.; Luo, Q.; Bao, Q. Y.; Ma, W.; Liu, W.; Li, W. W.; Wan, X. J.; Hu, X. T.; Han, Y. C.; Li, Y. W.; Zhou, Y. H.; Zou, Y. P.; Chen, Y. W.; Li, Y. F.; Chen, Y. S.; Tang, Z.; Hu, Z. C.; Zhang, Z. G.; Bo, Z. S. Recent Progress in Organic Solar Cells (Part I Material Science). Sci. China Chem. 2022, 65, 224–268.
- 23 Gong, Y.; Zou, T.; Li, X.; Zhuo, H.; Qin, S.; Sun, G.; Meng, L.; Li, Y. Introducing Alkoxy Groups as Outer Side Chains and Substituents of Π-Bridges Obtains High-Performance Medium-Bandgap Polymerized Small Molecule Acceptors. Sci. China Chem. 2023, 66, 2912–2920.
- 24 Kong, X.; Zhang, J.; Meng, L.; Sun, C.; Qin, S.; Zhu, C.; Zhang, J.; Li, J.; Wei, Z.; Li, Y. 18.55% Efficiency Polymer Solar Cells Based on a Small Molecule Acceptor with Alkylthienyl Outer Side Chains and a Low- Cost Polymer Donor Ptq10. CCS Chem. 2023, 5, 841–850.
- 25 Bai, Q.; Cheng, Y.; Wang, W.; Chen, J.; Sun, H. Polythiophene and Its Derivatives for All-Polymer Solar Cells. J. Mater. Chem. A 2024, 12, 16251–16267.
- 26 Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171–184.
- 27 Fu, J.; Yang, Q.; Huang, P.; Chung, S.; Cho, K.; Kan, Z.; Liu, H.; Lu, X.; Lang, Y.; Lai, H.; He, F.; Fong, P. W. K.; Lu, S.; Yang, Y.; Xiao, Z.; Li, G. Rational Molecular and Device Design Enables Organic Solar Cells Approaching 20% Efficiency. Nat. Commun. 2024, 15, 1830.
- 28 Guan, S.; Li, Y.; Xu, C.; Yin, N.; Xu, C.; Wang, C.; Wang, M.; Xu, Y.; Chen, Q.; Wang, D.; Zuo, L.; Chen, H. Self-Assembled Interlayer Enables High-Performance Organic Photovoltaics with Power Conversion Efficiency Exceeding 20%. Adv. Mater. 2024, 36, 2400342.
- 29 Song, J.; Zhang, C.; Li, C.; Qiao, J.; Yu, J.; Gao, J.; Wang, X.; Hao, X.; Tang, Z.; Lu, G.; Yang, R.; Yan, H.; Sun, Y. Non-Halogenated Solvent- Processed Organic Solar Cells with Approaching 20 % Efficiency and Improved Photostability. Angew. Chem. Int. Ed. 2024, 63, 202404297.
- 30 Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From Fullerene- Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control. Acc. Chem. Res. 2016, 49, 2424–2434.
- 31 Ye, L.; Zhang, S.; Ma, W.; Fan, B.; Guo, X.; Huang, Y.; Ade, H.; Hou, J. From Binary to Ternary Solvent: Morphology Fine-Tuning of D/A Blends in PDPP3T-Based Polymer Solar Cells. Adv. Mater. 2012, 24, 6335–6341.
- 32 McDowell, C.; Abdelsamie, M.; Toney, M. F.; Bazan, G. C. Solvent Additives: Key Morphology-Directing Agents for Solution-Processed Organic Solar Cells. Adv. Mater. 2018, 30, 1707114.
- 33 Lee, H.; Park, C.; Sin, D. H.; Park, J. H.; Cho, K. Recent Advances in Morphology Optimization for Organic Photovoltaics. Adv. Mater. 2018, 30, 1800453.
- 34 Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chem. Rev. 2014, 114, 7006–7043.
- 35 Bi, P.; Zhang, S.; Xiao, T.; Cui, M.; Chen, Z.; Ren, J.; Qin, C.; Lu, G.; Hao, X.; Hou, J. Suppressing Trap States and Energy Loss by Optimizing Vertical Phase Distribution through Ternary Strategy in Organic Solar Cells. Sci. China Chem. 2021, 64, 599–607.
- 36 Gao, H. H.; Sun, Y. N.; Cai, Y.; Wan, X. J.; Meng, L. X.; Ke, X.; Li, S. T.; Zhang, Y. M.; Xia, R. X.; Zheng, N.; Xie, Z. Q.; Li, C. X.; Zhang, M. T.; Yip, H. L.; Cao, Y.; Chen, Y. S. Achieving Both Enhanced Voltage and Current through Fine-Tuning Molecular Backbone and Morphology Control in Organic Solar Cells. Adv. Energy Mater. 2019, 9, 1901024.
- 37 Nian, L.; Gao, K.; Jiang, Y.; Rong, Q.; Hu, X.; Yuan, D.; Liu, F.; Peng, X.; Russell, T. P.; Zhou, G. Small-Molecule Solar Cells with Simultaneously Enhanced Short-Circuit Current and Fill Factor to Achieve 11% Efficiency. Adv. Mater. 2017, 29, 1700616.
- 38 Liu, X.; Zhang, C.; Duan, C.; Li, M.; Hu, Z.; Wang, J.; Liu, F.; Li, N.; Brabec, C. J.; Janssen, R. A. J.; Bazan, G. C.; Huang, F.; Cao, Y. Morphology Optimization Via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability. J. Am. Chem. Soc. 2018, 140, 8934.
- 39 Zhang, X.; Li, C.; Xu, J.; Wang, R.; Song, J.; Zhang, H.; Li, Y.; Jing, Y.-N.; Li, S.; Wu, G.; Zhou, J.; Li, X.; Zhang, Y.; Li, X.; Zhang, J.; Zhang, C.; Zhou, H.; Sun, Y.; Zhang, Y. High Fill Factor Organic Solar Cells with Increased Dielectric Constant and Molecular Packing Density. Joule 2022, 6, 444.
- 40 Chen, X. K.; Wang, T. H.; Brédas, J. L. Suppressing Energy Loss due to Triplet Exciton Formation in Organic Solar Cells: The Role of Chemical Structures and Molecular Packing. Adv. Energy Mater. 2017, 7, 1602713.
- 41 Menke, S. M.; Cheminal, A.; Conaghan, P.; Ran, N. A.; Greehnam, N. C.; Bazan, G. C.; Nguyen, T. Q.; Rao, A.; Friend, R. H. Order Enables Efficient Electron-Hole Separation at an Organic Heterojunction with a Small Energy Loss. Nat. Commun. 2018, 9, 277.
- 42 Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y. Volatilizable Solid Additive-Assisted Treatment Enables Organic Solar Cells with Efficiency over 18.8% and Fill Factor Exceeding 80%. Adv. Mater. 2021, 33, 2105301.
- 43 Qiu, B.; Chen, Z.; Qin, S.; Yao, J.; Huang, W.; Meng, L.; Zhu, H.; Yang, M. Y.; Zhang, Z.-G.; Li, Y. Highly Efficient All-Small-Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing. Adv. Mater. 2020, 32, 1908373.
- 44 Guo, J.; Qiu, B.; Xia, X.; Zhang, J.; Qin, S.; Li, X.; Lu, X.; Meng, L.; Zhang, Z.; Li, Y. Miscibility Regulation and Thermal Annealing Induced Hierarchical Morphology Enables High-Efficiency All-Small-Molecule Organic Solar Cells over 17%. Adv. Energy Mater. 2023, 13, 2300481.
- 45 Li, M.; Liu, F.; Wan, X.; Ni, W.; Kan, B.; Feng, H.; Zhang, Q.; Yang, X.; Wang, Y.; Zhang, Y.; Shen, Y.; Russell, T. P.; Chen, Y. Subtle Balance between Length Scale of Phase Separation and Domain Purification in Small-Molecule Bulk-Heterojunction Blends under Solvent Vapor Treatment. Adv. Mater. 2015, 27, 6296.
- 46 Wang, J. L.; Liu, K. K.; Yan, J.; Wu, Z.; Liu, F.; Xiao, F.; Chang, Z. F.; Wu, H. B.; Cao, Y.; Russell, T. P. Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. J. Am. Chem. Soc. 2016, 138, 7687.
- 47 Liu, B.; Xu, W.; Ma, R.; Lee, J. W.; Dela Peña, T. A.; Yang, W.; Li, B.; Li, M.; Wu, J.; Wang, Y.; Zhang, C.; Yang, J.; Wang, J.; Ning, S.; Wang, Z.; Li, J.; Wang, H.; Li, G.; Kim, B. J.; Niu, L.; Guo, X.; Sun, H. Isomerized Green Solid Additive Engineering for Thermally Stable and Eco-Friendly All-Polymer Solar Cells with Approaching 19% Efficiency. Adv. Mater. 2023, 35, 2308334.
- 48 Yu, R.; Yao, H.; Hong, L.; Qin, Y.; Zhu, J.; Cui, Y.; Li, S.; Hou, J. Design and Application of Volatilizable Solid Additives in Non-Fullerene Organic Solar Cells. Nat. Commun. 2018, 9, 4645.
- 49 Li, C.; Gu, X.; Chen, Z.; Han, X.; Yu, N.; Wei, Y.; Gao, J.; Chen, H.; Zhang, M.; Wang, A.; Zhang, J.; Wei, Z.; Peng, Q.; Tang, Z.; Hao, X.; Zhang, X.; Huang, H. Achieving Record-Efficiency Organic Solar Cells Upon Tuning the Conformation of Solid Additives. J. Am. Chem. Soc. 2022, 144, 14731.
- 50 Hu, K.; Zhu, C.; Ding, K.; Qin, S.; Lai, W.; Du, J.; Zhang, J.; Wei, Z.; Li, X.; Zhang, Z.; Meng, L.; Ade, H.; Li, Y. Solid Additive Tuning of Polymer Blend Morphology Enables Non-Halogenated-Solvent All-Polymer Solar Cells with an Efficiency of over 17%. Energy Environ. Sci. 2022, 15, 4157.
- 51 Song, J.; Li, Y.; Cai, Y.; Zhang, R.; Wang, S.; Xin, J.; Han, L.; Wei, D.; Ma, W.; Gao, F.; Sun, Y. Solid Additive Engineering Enables High-Efficiency and Eco-Friendly All-Polymer Solar Cells. Matter 2022, 5, 4047.
- 52 Duan, X. P.; Yang, Y. N.; Yu, J. F.; Liu, C. H.; Li, X. M.; Jee, M. H.; Gao, J. X.; Chen, L. Y.; Tang, Z.; Woo, H. Y.; Lu, G. H.; Sun, Y. M. Solid Additive Dual-Regulates Spectral Response Enabling High-Performance Semitransparent Organic Solar Cells. Adv. Mater. 2024, 36, 2308750.
- 53 Fan, C. L.; Yang, H.; Zhang, Q.; Bao, S. A.; Fan, H. Y.; Zhu, X. M.; Cui, C. H.; Li, Y. F. Synergistic Effect of Solvent and Solid Additives on Morphology Optimization for High-Performance Organic Solar Cells. Sci. China Chem. 2021, 64, 2017.
- 54 Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2011, 33, 580–592.
- 55 Liang, W. T.; Chen, L.; Wang, Z. B.; Peng, Z. X.; Zhu, L. X.; Kwok, C. H.; Yu, H.; Xiong, W. Z.; Li, T. Z.; Zhang, Z. Y.; Wang, Y. F.; Liao, Y. Z.; Zhang, G. Y.; Hu, H. W.; Chen, Y. W. Oligothiophene Additive-Assisted Morphology Control and Recombination Suppression Enable High-Performance Organic Solar Cells. Adv. Energy Mater. 2024, 14, 2303661.
- 56 Kroh, D.; Eller, F.; Schötz, K.; Wedler, S.; Perdigón-Toro, L.; Freychet, G.; Wei, Q. Y.; Dörr, M.; Jones, D.; Zou, Y. P.; Herzig, E. M.; Neher, D.; Köhler, A. Identifying the Signatures of Intermolecular Interactions in Blends of PM6 with Y6 and N4 Using Absorption Spectroscopy. Adv. Funct. Mater. 2022, 32, 2205711.
- 57 Offermans, T.; Meskers, S. C. J.; Janssen, R. A. J. Time Delayed Collection Field Experiments on Polymer: Fullerene Bulk-Heterojunction Solar Cells. J. Appl. Phys. 2006, 100, 074509.
- 58 Lu, L.; Xu, T.; Chen, W.; Landry, E. S.; Yu, L. Ternary Blend Polymer Solar Cells with Enhanced Power Conversion Efficiency. Nat. Photonics 2014, 8, 716–722.
- 59 Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in Polymer-Fullerene Bulk Heterojunction Solar Cells. Phys. Rev. B 2010, 82, 245207.
- 60 Liu, T.; Huo, L. J.; Chandrabose, S.; Chen, K.; Han, G. C.; Qi, F.; Meng, X. Y.; Xie, D. J.; Ma, W.; Yi, Y. P.; Hodgkiss, J. M.; Liu, F.; Wang, J.; Yang, C. L.; Sun, Y. M. Optimized Fibril Network Morphology by Precise Side-Chain Engineering to Achieve High-Performance Bulk-Heterojunction Organic Solar Cells. Adv. Mater. 2018, 30, 1707353.
- 61 Pang, S. T.; Zhang, R. W.; Duan, C. H.; Zhang, S.; Gu, X. D.; Liu, X.; Huang, F.; Cao, Y. Alkyl Chain Length Effects of Polymer Donors on the Morphology and Device Performance of Polymer Solar Cells with Different Acceptors. Adv. Energy Mater. 2019, 9, 1901740.
- 62 Wang, Z.; Gao, K.; Kan, Y.; Zhang, M.; Qiu, C.; Zhu, L.; Zhao, Z.; Peng, X.; Feng, W.; Qian, Z.; Gu, X.; Jen, A. K.; Tang, B. Z.; Cao, Y.; Zhang, Y.; Liu, F. The Coupling and Competition of Crystallization and Phase Separation, Correlating Thermodynamics and Kinetics in Opv Morphology and Performances. Nat. Commun. 2021, 12, 332.