Free-Radical Polymerization Induced Grafting-to of Polymer Chains onto Aluminum Nanoparticles†
Panqi Sun
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorChenggong Yang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorFei Peng
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorJunbo Dang
Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, Jilin, 130012 China
Search for more papers by this authorWentao Wang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorDaiwu Deng
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorNing-Ning Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorYang Yang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorCorresponding Author
Kun Liu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
E-mail: [email protected]Search for more papers by this authorPanqi Sun
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorChenggong Yang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorFei Peng
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorJunbo Dang
Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, Jilin, 130012 China
Search for more papers by this authorWentao Wang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorDaiwu Deng
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorNing-Ning Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorYang Yang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorCorresponding Author
Kun Liu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
E-mail: [email protected]Search for more papers by this authorDedicated to the Special Issue of Emerging Themes in Polymer Science.
Comprehensive Summary
Aluminum nanoparticles (Al NPs) have significant potential applications in various fields due to their unique LSPR. Significant advancements have been achieved in controlling the size and morphology of Al NPs. However, the efficient modification of Al NPs with polymers has not been implemented. Herein, we report a facile and efficient free-radical polymerization induced grafting-to (FRPIGt) method for grafting polymer chains onto Al NPs. By optimizing polymerization conditions, we were able to achieve a polymer brush layer with a weight loss fraction of up to 43.3%, which was higher than those of other polymers with carboxyl or primary amine end groups. Moreover, a broad range of vinyl monomers, including styrene, methacrylate, and methyl methacrylate, can be applied using the FRPIGt method to modify Al NPs. In addition, the FRPIGt method can be extended to photoinduced organocatalyzed atom-transfer-radical polymerization. This work paves a new path for the preparation of a wide range of polymer-functionalized Al NPs and their polymer composites to be utilized in various fields.
Supporting Information
Filename | Description |
---|---|
CJOC202400510-sup-0001-supinfo.pdfPDF document, 1.4 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Bisio, F.; Zaccaria, R. P.; Moroni, R.; Maidecchi, G.; Alabastri, A.; Gonella, G.; Giglia, A.; Andolfi, L.; Nannarone, S.; Mattera, L.; Canepa, M. Pushing the high-energy limit of plasmonics. ACS Nano 2014, 8, 9239–9247.
- 2 Ekinci, Y.; Solak, H. H.; Löffler, J. F. Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 2008, 104, 083107–6.
- 3 Lecarme, O.; Sun, Q.; Ueno, K.; Misawa, H. Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods. ACS Photonics 2014, 1, 538–546.
- 4 Taguchi, A.; Saito, Y.; Watanabe, K.; Yijian, S.; Kawata, S. Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures. Appl. Phys. Lett. 2012, 101, 081110.
- 5 Yu, H.; Zhang, P.; Lu, S.; Yang, S.; Peng, F.; Chang, W.-S.; Liu, K. Synthesis and multipole plasmon resonances of spherical aluminum nanoparticles. J. Phys. Chem. Lett. 2020, 11, 5836–5843.
- 6 Sharma, B.; Cardinal, M. F.; Ross, M. B.; Zrimsek, A. B.; Bykov, S. V.; Punihaole, D.; Asher, S. A.; Schatz, G. C.; Van Duyne, R. P. Aluminum film-over-nanosphere substrates for deep-UV surface-enhanced resonance Raman spectroscopy. Nano Lett. 2016, 16, 7968–7973.
- 7 Jha, S. K.; Ahmed, Z.; Agio, M.; Ekinci, Y.; Löffler, J. F. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J. Am. Chem. Soc. 2012, 134, 1966–1969.
- 8 Tian, S.; Neumann, O.; McClain, M. J.; Yang, X.; Zhou, L.; Zhang, C.; Nordlander, P.; Halas, N. J. Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection. Nano Lett. 2017, 17, 5071–5077.
- 9 Peng, F.; Lu, S.-Y.; Sun, P.-Q.; Zhang, N.-N.; Liu, K. Branched Aluminum Nanocrystals with Internal Hot Spots: Synthesis and Single-Particle Surface-Enhanced Raman Scattering. Nano Lett. 2023, 23, 6567–6573.
- 10 Swearer, D. F.; Zhao, H.; Zhou, L.; Zhang, C.; Robatjazi, H.; Martirez, J. M. P.; Krauter, C. M.; Yazdi, S.; McClain, M. J.; Ringe, E.; Carter, E. A.; Nordlander, P.; Halas, N. J. Heterometallic antenna−reactor complexes for photocatalysis. Proc. Natl. Acad. Sci. 2016, 113, 8916–8920.
- 11 Chowdhury, M. H.; Ray, K.; Gray, S. K.; Pond, J.; Lakowicz, J. R. Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules. Anal. Chem. 2009, 81, 1397–1403.
- 12 Olson, J.; Manjavacas, A.; Liu, L.; Chang, W.-S.; Foerster, B.; King, N. S.; Knight, M. W.; Nordlander, P.; Halas, N. J.; Link, S. Vivid, full-color aluminum plasmonic pixels. Proc. Natl. Acad. Sci. 2014, 111, 14348–14353.
- 13 Tan, S. J.; Zhang, L.; Zhu, D.; Goh, X. M.; Wang, Y. M.; Kumar, K.; Qiu, C.-W.; Yang, J. K. W. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 2014, 14, 4023–4029.
- 14 Yang, C.; Marian, C.; Liu, J.; Di, Q.; Xu, M.; Zhang, Y.; Han, W.; Liu, K. Polymer grafted aluminum nanoparticles for percolative composite films with enhanced compatibility. Polymers 2019, 11, 638–651.
- 15 Xu, J.; Wong, C. P. Low-loss percolative dielectric composite. Appl. Phys. Lett. 2005, 87, 082907.
- 16 Kochergin, V.; Neely, L.; Jao, C.-Y.; Robinson, H. D. Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices. Appl. Phys. Lett. 2011, 98, 133305.
- 17 Zhang, Y.; Ouyang, Z.; Stokes, N.; Jia, B.; Shi, Z.; Gu, M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Appl. Phys. Lett. 2012, 100, 151101.
- 18 McClain, M. J.; Schlather, A. E.; Ringe, E.; King, N. S.; Liu, L.; Manjavacas, A.; Knight, M. W.; Kumar, I.; Whitmire, K. H.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum nanocrystals. Nano Lett. 2015, 15, 2751–2755.
- 19 Lu, S.; Yu, H.; Gottheim, S.; Gao, H.; DeSantis, C. J.; Clark, B. D.; Yang, J.; Jacobson, C. R.; Lu, Z.; Nordlander, P.; Halas, N. J.; Liu, K. Polymer-directed growth of plasmonic aluminum nanocrystals. J. Am. Chem. Soc. 2018, 140, 15412–15418.
- 20 Yang, S.; Lu, S.; Li, Y.; Yu, H.; He, L.; Sun, T.; Yang, B.; Liu, K. Poly (ethylene oxide) mediated synthesis of sub-100-nm aluminum nanocrystals for deep ultraviolet plasmonic nanomaterials. CCS Chem. 2020, 2, 516–526.
- 21 Foley, T. J.; Johnson, C. E.; Higa, K. T. Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem. Mater. 2005, 17, 4086–4091.
- 22 Huang, X.; Jiang, P. Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 2015, 27, 546–554.
- 23 Xie, L.; Huang, X.; Wu, C.; Jiang, P. Core-shell structured poly (methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J. Mater. Chem. 2011, 21, 5897–5906.
- 24 Liu, Y.; Kumar, S. Polymer/carbon nanotube nano composite fibers–a review. ACS Appl. Mater. Interfaces 2014, 6, 6069–6087.
- 25 Li, Q.; Han, K.; Gadinski, M. R.; Zhang, G.; Wang, Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 2014, 26, 6244–6249.
- 26 Yang, Y.; Liu, J.; Liang, C.; Feng, L.; Fu, T.; Dong, Z.; Chao, Y.; Li, Y.; Lu, G.; Chen, M.; Liu, Z. Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 2016, 10, 2774–2781.
- 27 Lee, H.; Yu, M. K.; Park, S.; Moon, S.; Min, J. J.; Jeong, Y. Y.; Kang, H.-W.; Jon, S. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 2007, 129, 12739–12745.
- 28 Meeseepong, M.; Ghosh, G.; Shrivastava, S.; Lee, N.-E. Fluorescence-Enhanced Microfluidic Biosensor Platform Based on Magnetic Beads with Highly Stable ZnO Nanorods for Biomarker Detection. ACS Appl. Mater. Interfaces 2023, 15, 21754–21765.
- 29 Liu, J.; Ma, S.; Wei, Q.; Jia, L.; Yu, B.; Wang, D.; Zhou, F. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis. Nanoscale 2013, 5, 11894–11901.
- 30 Liu, H.; Ye, H.; Lin, T.; Zhou, T. Synthesis and characterization of PMMA/Al2O3 composite particles by in situ emulsion polymerization. Particuology 2008, 6, 207–213.
- 31 Yan, J.; Pan, X.; Wang, Z.; Lu, Z.; Wang, Y.; Liu, L.; Zhang, J.; Ho, C.; Bockstaller, M. R.; Matyjaszewski, K. A fatty acid-inspired tetherable initiator for surface-initiated atom transfer radical polymerization. Chem. Mater. 2017, 29, 4963–4969.
- 32 Tao, X.; Han, C.; Yang, Y.; Liu, K. Synthesis of Aluminum Nanoparticles@ Polymer Core-shell Nanostructures by Surface-initiated Polymerization. Chem. J. Chinese U. 2022, 43, 20220367–8 (in Chinese).
- 33 Gao, B.; Jiang, G.; An, F. Preparation of iminodiacetic acid-type composite chelating material IDAA-PGMA/SiO2 and preliminary studies on adsorption behavior of heavy metal ions and rare earth ions. J. Appl. Polym. Sci. 2012, 125, 2529–2538.
- 34 Xue, Y.; Gao, H.-M.; Yu, L.; Zhang, N.-N.; Kang, J.; Wang, C.-Y.; Lu, Z.-Y.; Whittaker, A. K.; Liu, K. Physisorption of Poly (ethylene glycol) on Inorganic Nanoparticles. ACS Nano 2022, 16, 6634–6645.
- 35 Wang, Z.; Mahoney, C.; Yan, J.; Lu, Z.; Ferebee, R.; Luo, D.; Bockstaller, M. R.; Matyjaszewski, K. Preparation of well-defined poly (styrene-co-acrylonitrile)/ZnO hybrid nanoparticles by an efficient ligand exchange strategy. Langmuir 2016, 32, 13207–13213.
- 36 Yu, H.; Lu, S.; Gao, H.; Lu, Z.; Liu, K. General criteria for evaluating suitable polymer ligands for the synthesis of aluminum nanocrystals. Chem. Commun. 2020, 56, 217–220.
- 37 Chen, M.; Zhong, M.; Johnson, J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 2016, 116, 10167–10211.
- 38 Yagci, Y.; Jockusch, S.; Turro, N. J. Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 2010, 43, 6245–6260.
- 39 Bansal, A.; Kumar, A.; Kumar, P.; Bojja, S.; Chatterjee, A. K.; Ray, S. S.; Jain, S. L. Visible light-induced surface initiated atom transfer radical polymerization of methyl methacrylate on titania/reduced graphene oxide nanocomposite. RSC Adv. 2015, 5, 21189–21196.
- 40 Dukes, D.; Li, Y.; Lewis, S.; Benicewicz, B.; Schadler, L.; Kumar, S. K. Conformational transitions of spherical polymer brushes: synthesis, characterization, and theory. Macromolecules 2010, 43, 1564–1570.
- 41 Xue, Y.; Liu, S.; An, Z.; Li, J.-X.; Zhang, N.-N.; Wang, C.-Y.; Wang, X.; Sun, T.; Liu, K. θ-Solvent-Mediated Double-Shell Polyethylene Glycol Brushes on Nanoparticles for Improved Stealth Properties and Delivery Efficiency. J. Phys. Chem. Lett. 2021, 12, 5363–5370.
- 42 Myronyuk, I. F.; Mandzyuk, V. I.; Sachko, V. M.; Gun'ko, V. M. Structural and morphological features of disperse alumina synthesized using aluminum nitrate nonahydrate. Nanoscale Res. Lett. 2016, 11, 1–8.
- 43 Giacomazzi, L.; Shcheblanov, N. S.; Povarnitsyn, M. E.; Li, Y.; Mavrič, A.; Zupančič, B.; Grdadolnik, J.; Pasquarello, A. Infrared spectra in amorphous alumina: A combined ab initio and experimental study. Phys. Rev. Mater. 2023, 7, 045604–14.
- 44 Sugumaran, D.; Karim, K. J. A. Removal of copper (II) ion using chitosan-graft-poly (methyl methacrylate) as adsorbent. Eproc. Chem 2017, 2, 1–11.
- 45 Wåhlander, M.; Nilsson, F.; Larsson, E.; Tsai, W.-C.; Hillborg, H.; Carlmark, A.; Gedde, U. W.; Malmström, E. Polymer-grafted Al2O3- nanoparticles for controlled dispersion in poly (ethylene-co-butyl acrylate) nanocomposites. Polymer 2014, 55, 2125–2138.
- 46 Hermán, V.; Takacs, H.; Duclairoir, F.; Renault, O.; Tortai, J. H.; Viala, B. Core double–shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization. RSC Adv. 2015, 5, 51371–51381.
- 47 So, K. P.; Biswas, C.; Lim, S. C.; An, K. H.; Lee, Y. H. Electroplating formation of Al–C covalent bonds on multiwalled carbon nanotubes. Synth. Met. 2011, 161, 208–212.
- 48 Ling, Q. D.; Li, S.; Kang, E. T.; Neoh, K. G.; Liu, B.; Huang, W. Interface formation between the Al electrode and poly [2,7-(9,9-dihexylfluorene)-co-alt-2,5-(decylthiophene)](PFT) investigated in situ by XPS. Appl. Surf. Sci. 2002, 199, 74–82.
- 49 Figueiredo, N. M.; Carvalho, N. J. M.; Cavaleiro, A. An XPS study of Au alloyed Al–O sputtered coatings. Appl. Surf. Sci. 2011, 257, 5793–5798.
- 50 Chipara, D. M.; Macossay, J.; Ybarra, A. V. R.; Chipara, A. C.; Eubanks, T. M.; Chipara, M. Raman spectroscopy of polystyrene nanofibers- Multiwalled carbon nanotubes composites. Appl. Surf. Sci. 2013, 275, 23–27.
- 51 Anema, J. R.; Brolo, A. G.; Felten, A.; Bittencourt, C. Surface-enhanced Raman scattering from polystyrene on gold clusters. J. Raman Spectrosc. 2010, 41, 745–751.
- 52 Parente, V.; Fredriksson, C.; Selmani, A.; Lazzaroni, R.; Bre'das, J.-L. Theoretical Characterization of the Vibrational Properties at the Aluminum/trans-Polyacetylene Interface. J. Phys. Chem. B 1997, 101, 4193–4202.
- 53 Hawkridge, A. M.; Pemberton, J. E. Model Aluminum-Poly(p-phenylenevinylene) Interfaces Studied by Surface Raman Spectroscopy. J. Am. Chem. Soc. 2003, 125, 624–625.
- 54 Hao, W.; Li, G.; Niu, L.; Gou, R.; Zhang, C. Molecular dynamics insight into the evolution of Al nanoparticles in the thermal decomposition of energetic materials. J. Phys. Chem. C 2020, 124, 10783–10792.
- 55 Mavrič, A.; Valant, M.; Cui, C.; Wang, Z. M. Advanced applications of amorphous alumina: From nano to bulk. J. Non-cryst. Solids 2019, 521, 119493–119508.
- 56 Yang, S.; Zhang, F.; Tai, J.; Li, Y.; Yang, Y.; Wang, H.; Zhang, J.; Xie, Z.; Xu, B.; Zhong, H.; Liu, K.; Yang, B. A detour strategy for colloidally stable block-copolymer grafted MAPbBr3 quantum dots in water with long photoluminescence lifetime. Nanoscale 2018, 10, 5820–5826.
- 57 Miyake, G. M.; Theriot, J. C. Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light. Macromolecules 2014, 47, 8255–8261.
- 58 Wang, J.-S.; Matyjaszewski, K. Controlled/" living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615.