Multistimuli-Responsive Luminescent Porous Organic Polymers with Chiroptical Properties and Acid-Induced Degradation
Youling He
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorDongyang Fan
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorLiang Zhang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorDong Wang
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorCorresponding Author
Ting Han
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Rongrong Hu
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Ben Zhong Tang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorYouling He
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorDongyang Fan
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorLiang Zhang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorDong Wang
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorCorresponding Author
Ting Han
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Rongrong Hu
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Ben Zhong Tang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Porous organic polymers (POPs) have attracted great attention in past decades. Although diverse functional POPs have been developed, multistimuli-responsive POPs with excellent aggregate-state luminescence together with good chiroptical properties have rarely been reported. Herein, two pairs of Salen-type enantiomeric POPs with multistimuli-responsive luminescence and chiral features were designed and synthesized by facile polycondensation reactions between polyfunctional aggregation-induced emission luminogen (AIEgen)-containing salicylaldehyde derivatives and chiral diamines. With Salen units in polymer backbones as tetradentate ligands, a series of POP-metal complexes were further prepared. The obtained POPs and metal complexes show good porosity, high thermal stability, and obvious circular dichroism signals. Moreover, benefiting from the coexistence of AIEgen and Salen units in polymer structures, these POPs exhibit excellent luminescence performance in aggregate states and tunable fluorescence behaviors in response to external stimuli of Zn2+ ion, mechanical forces, organic solvent, and acids. Due to the dynamic feature of Schiff base C=N bonds, the present POPs can efficiently undergo hydrolysis reactions under strong acidic conditions to reproduce the AIEgen- containing monomers, and such an acid-induced degradation process can be directly visualized and dynamically monitored via fluorescence variation. These properties collectively make the POPs candidate materials for applications in heterogeneous asymmetric catalysis, fluorescence sensing, biomedicine, etc.
Supporting Information
Filename | Description |
---|---|
cjoc202400162_sup_0001_supinfo.pdfPDF document, 2.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Mohamed, M. G.; EL-Mahdy, A. F. M.; Kotp, M. G.; Kuo, S. W. Advances in porous organic polymers: syntheses, structures, and diverse applications. Mater. Adv. 2022, 3, 707–733.
- 2 Lee, J. M.; Cooper, A. I. Advances in conjugated microporous polymers. Chem. Rev. 2020, 120, 2171–2214.
- 3 Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.
- 4 Feng, X.; Ding, X. S.; Jiang, D. L. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022.
- 5 Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. One-step construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 2014, 136, 15885–15888.
- 6 Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S. H.; Calik, M.; Hettstedt, C.; Karaghiosoff, K.; Döblinger, M.; Clark, T.; Chapman, K. W.; Auras, F.; Bein, T. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat. Chem. 2016, 8, 310–316.
- 7 Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.
- 8 Zhang, W. W.; Chen, L. J.; Dai, S.; Zhao, C. X.; Ma, C.; Wei, L.; Zhu, M. H.; Chong, S. Y.; Yang, H. F.; Liu, L. J.; Bai, Y.; Yu, M. J.; Xu, Y. J.; Zhu, X. W.; Zhu, Q.; An, S. H.; Sprick, R. S.; Little, M. A.; Wu, X. F.; Jiang, S.; Wu, Y. Z.; Zhang, Y. B.; Tian, H.; Zhu, W. H.; Cooper, A. I. Reconstructed covalent organic frameworks. Nature 2022, 604, 72–79.
- 9 Wang, S. T.; Li, H. T.; Huang, H. N.; Cao, X. H.; Chen, X. D.; Cao, D. P. Porous organic polymers as a platform for sensing applications. Chem. Soc. Rev. 2022, 51, 2031–2080.
- 10 Zhang, Z. W.; Jia, J.; Zhi, Y. F.; Ma, S.; Liu, X. M. Porous organic polymers for light-driven organic transformations. Chem. Soc. Rev. 2022, 51, 2444–2490.
- 11 Yang, D. H.; Tao, Y.; Ding, X. S.; Han, B. H. Porous organic polymers for electrocatalysis. Chem. Soc. Rev. 2022, 51, 761–791.
- 12 Huang, A. R.; Li, Q. Q.; Li, Z. Molecular uniting set identified characteristic (MUSIC) of organic optoelectronic material. Chin. J. Chem. 2022, 40, 2356–2370.
- 13 Méndez-Gil, N.; Gámez-Valenzuela, S.; Echeverri, M.; Suyo, G. H.; Iglesias, M.; Delgado, M. C. R.; Gómez-Lor, B. Donor-acceptor truxene-based porous polymers: synthesis, optoelectronic characterization and defense-related applications. Adv. Funct. Mater. 2024, DOI: https://doi.org/10.1002/adfm.202316754.
- 14 Zhang, T.; Xing, G. L.; Chen, W. B.; Chen, L. Porous organic polymers: a promising platform for efficient photocatalysis, Porous organic polymers: a promising platform for efficient photocatalysis. Mater. Chem. Front. 2020, 4, 332–353.
- 15 Ying, Y. P.; Tong, M. M.; Ning, S. C.; Ravi, S. K.; Peh, S. B.; Tan, S. C.; Pennycook, S. J.; Zhao, D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 2020, 142, 4472–4480.
- 16 Yu, C. Y.; Li, H.; Wang, Y. J.; Suo, J. Q.; Guan, X. Y.; Wang, R.; Valtchev, V.; Yan, Y. S.; Qiu, S. L.; Fang, Q. R. Three-dimensional triptycene-functionalized covalent organic frameworks with hea net for hydrogen adsorption. Angew. Chem. Int. Ed. 2022, 61, e202117101.
- 17 Jin, F. Z.; Lin, E.; Wang, T. H.; Geng, S. B.; Wang, T.; Liu, W. S.; Xiong, F. H.; Wang, Z. F.; Chen, Y.; Cheng, P.; Zhang, Z. J. Bottom-up synthesis of 8-connected three-dimensional covalent organic frameworks for highly efficient ethylene/ethane separation. J. Am. Chem. Soc. 2022, 144, 5643–5652.
- 18 Lee, J.; Lee, J.; Kim, J. Y.; Kim, M. Covalent connections between metal–organic frameworks and polymers including covalent organic frameworks. Chem. Soc. Rev. 2023, 52, 6379–6416.
- 19 Diao, Z. J.; Liu, S. Y.; Wen, H.; Liu, G. L.; Yang, T.; Li, J. J.; Liu, X. Q.; Sun, L. B. Detachable porous organic polymers responsive to light and heat. Angew. Chem. Int. Ed. 2023, 62, e202301739.
- 20 Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.
- 21 Zhang, L.; Yi, L. Z.; Sun, Z. J.; Deng, H. X. Covalent organic frameworks for optical applications. Aggregate 2021, 2, e24.
- 22 Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. L. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 5797–5800.
- 23 Zhang, L.; Yang, Q. C.; Wang, S.; Xiao, Y.; Wan, S. C.; Deng, H. X.; Sun, Z. J. Engineering multienzyme-mimicking covalent organic frameworks as pyroptosis inducers for boosting antitumor immunity. Adv. Mater. 2022, 34, e2108174.
- 24 Zhang, J.; Xue, F.; Wang, Z. G. AIE-Active Fluorescent porous polymers for recognizable detection of imidacloprid and structure–property relationship. Chem. Mater. 2022, 34, 10701–10710.
- 25 Cheng, G.; Hasell, T.; Trewin, A.; Adams, D. J.; Cooper, A. I. Soluble conjugated microporous polymers. Angew. Chem. Int. Ed. 2012, 51, 12727–12731.
- 26 Pallavi, P.; Bandyopahyay, S.; Louis, J.; Deshmukh, A.; Patra, A. A soluble conjugated porous organic polymer: efficient white light emission in solution, nanoparticles, gel and transparent thin film. Chem. Commun. 2017, 53, 1257–1260.
- 27 Bandyopadhyay, S.; Kundu, S.; Giri, A.; Patra, A. A smart photosensitizer based on a red emitting solution processable porous polymer: generation of reactive oxygen species. Chem. Commun. 2018, 54, 9123–9126.
- 28 Jin, E. Q.; Li, J.; Geng, K. Y.; Jiang, Q. H.; Xu, H.; Xu, Q.; Jiang, D. L. Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks. Nat. Commun. 2018, 9, 4143.
- 29 Gao, Q.; Li, X.; Ning, G. H.; Leng, K.; Tian, B. B.; Liu, C. B.; Tang, W.; Xu, H. S.; Loh, K. P. Highly photoluminescent two-dimensional imine- based covalent organic frameworks for chemical sensing. Chem. Commun. 2018, 54, 2349–2352.
- 30 Yuan, M. J.; Ma, F. Y.; Dai, X.; Chen, L. X.; Zhai, F. W.; He, L. W.; Zhang, M. X.; Chen, J. C.; Shu, J.; Wang, X. M.; Wang, X.; Zhang, Y. G.; Fu, X. B.; Li, Z. Y.; Guo, C. L.; Chen, L.; Chai, Z. F.; Wang, S. Deuterated covalent organic frameworks with significantly enhanced luminescence. Angew. Chem. Int. Ed. 2021, 60, 21250–21255.
- 31 Keller, N.; Bessinger, D.; Reuter, S.; Calik, M.; Ascherl, L.; Hanusch, F. C.; Auras, F.; Bein, T. Oligothiophene-bridged conjugated covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8194–8199.
- 32 Lin, G. Q.; Ding, H. M.; Yuan, D. Q.; Wang, B. S.; Wang, C. A pyrene-based, fluorescent three-dimensional covalent organic framework. J. Am. Chem. Soc. 2016, 138, 3302–3305.
- 33 Shan, Z.; Wu, M. M.; Zhu, D. Y.; Wu, X. M.; Zhang, K.; Verduzco, R.; Zhang, G. 3D covalent organic frameworks with interpenetrated pcb topology based on 8-connected cubic nodes. J. Am. Chem. Soc. 2022, 144, 5728–5733.
- 34 Xia, Y. D.; Cheng, Y.; Wu, Y. J.; Xia, Y.; Yin, X. B. Driving fluorescence by forming AIEgens in a hollow azine-linked covalent organic framework. Chem. Mater. 2023, 35, 2579–2587.
- 35 Ding, H. M.; Li, J.; Xie, G. H.; Lin, G. Q.; Chen, R. F.; Peng, Z. K.; Yang, C. L.; Wang, B. S.; Sun, J. L.; Wang, C. An AIEgen-based 3D covalent organic framework for white light-emitting diodes. Nat. Commun. 2018, 9, 5234.
- 36 Hu, R. R.; Leung, N. L. C.; Tang, B. Z. AIE macromolecules: syntheses, structures and functionalities. Chem. Soc. Rev. 2014, 43, 4494–4562.
- 37 Zhou, P. W.; Han, K. L. ESIPT-based AIE luminogens: Design strategies, applications, and mechanisms. Aggregate 2022, 3, e160.
- 38 Han, T.; Yan, D. Y.; Wu, Q.; Song, N.; Zhang, H. K.; Wang, D. Aggregation-induced emission: a rising star in chemistry and materials science. Chin. J. Chem. 2021, 39, 677–689.
- 39 Yang, J.; Fang, M. M.; Li, Z. Organic luminescent materials: The concentration on aggregates from aggregation-induced emission. Aggregate 2020, 1, 6–18.
- 40 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar. Chem. Rev. 2015, 115, 11718–11940.
- 41 Song, B.; Zhang, L.; Sun, J. W.; Lam, J. W. Y.; Tang, B. Z. In situ synthesis of AIEgen-based porous organic polymer films by interfacial amino-yne click polymerization for efficient light-harvesting. Angew. Chem. Int. Ed. 2023, 62, e202302543.
- 42 Dong, J. Q.; Li, X.; Peh, S. B.; Yuan, Y. D.; Wang, Y. X.; Ji, D. X.; Peng, S. J.; Liu, G. L.; Ying, S. M.; Yuan, D. Q.; Jiang, J. W.; Ramakrishna, S.; Zhao, D. Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification. Chem. Mater. 2019, 31, 146–160.
- 43 Liu, X.; Liu, C. F.; Xu, S. H.; Cheng, T.; Wang, S.; Lai, W. Y.; Huang, W. Porous organic polymers for high-performance supercapacitors. Chem. Soc. Rev. 2022, 51, 3181–3225.
- 44 Zhang, L.; Song, A.; Yang, Q. C.; Li, S. J.; Wang, S.; Wan, S. C.; Sun, J. W.; Kwok, R. T. K.; Lam, J. W. Y.; Deng, H. X.; Tang, B. Z.; Sun, Z. J. Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy. Nat. Commun. 2023, 14, 5355.
- 45 Liao, X.; Su, Y.; Tang, X. Y. Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts. Sci. China Chem. 2022, 65, 2096–2121.
- 46 Wu, Y.; Yan, C. X.; Li, X. S.; You, L. H.; Yu, Z. Q.; Wu, X. F.; Zheng, Z. G.; Liu, G. F.; Guo, Z. Q.; Tian, H.; Zhu, W. H. Circularly polarized fluorescence resonance energy transfer (C-FRET) for efficient chirality transmission within an intermolecular system. Angew. Chem. Int. Ed. 2021, 60, 24549–24557.
- 47 Zhang, J. Y.; Hu, L. R.; Zhang, K. H.; Li, X. G.; Wang, H. R.; Wang, Z. Y.; Sung, H. H. Y.; Williams, I. D.; Zeng, Z. B.; Lam, J. W. Y.; Zhang, H. K.; Tang, B. Z. How to manipulate through-space conjugation and clusteroluminescence of simple AIEgens with isolated phenyl rings. J. Am. Chem. Soc. 2021, 143, 9565–9574.
- 48 Erdemir, S.; Malkondu, S.; Kocyigit, O. A reversible calix[4]arene armed phenolphthalein based fluorescent probe for the detection of Zn2+ and an application in living cells. Luminescence 2019, 34, 106–112.
- 49 Chi, Z. G.; Zhang, X. Q.; Xu, B. J.; Zhou, X.; Ma, C. P.; Zhang, Y.; Liu, S. W.; Xu, J. R. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 2012, 41, 3878–3896.
- 50 Han, T.; Wang, X. N.; Wang, D.; Tang, B. Z. Functional polymer systems with aggregation-induced emission and stimuli responses. Top. Curr. Chem. 2021, 379, 7.
- 51 Chen, J. R.; Zhao, J.; Xu, B. J.; Yang, Z. Y.; Liu, S. W.; Xu, J. R.; Zhang, Y.; Wu, Y. C.; Lv, P.; Chi, Z. G. An AEE-active polymer containing tetraphenylethene and 9,10-distyrylanthracene moieties with remarkable mechanochromism. Chin. J. Polym. Sci. 2017, 35, 282–292.
- 52 Ye, R. Q.; Liu, Y. Y.; Zhang, H. K.; Su, H. F.; Zhang, Y. L.; Xu, L. G.; Hu, R. R.; Kwok, R. T. K.; Wong, K. S.; Lam, J. W. Y.; Goddard, W. A.; Tang, B. Z. Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polym. Chem. 2017, 8, 1722–1727.
- 53 Kiebala, D. J.; Style, R.; Vanhecke, D.; Calvino, C.; Weder, C.; Schrettl, S. Sub-micrometer mechanochromic inclusions enable strain sensing in polymers. Adv. Funct. Mater. 2023, 33, 2304938.
- 54 Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 46–57.
- 55 Hsu, T. G.; Zhou, J. F.; Su, H. W.; Schrage, B. R.; Ziegler, C. J.; Wang, J. P. A polymer with “locked” degradability: superior backbone stability and accessible degradability enabled by mechanophore installation. J. Am. Chem. Soc. 2020, 142, 2100–2104.
- 56 Shelef, O.; Gnaim, S.; Shabat, D. Self-immolative polymers: an emerging class of degradable materials with distinct disassembly profiles. J. Am. Chem. Soc. 2021, 143, 21177–21188.