Recent Advances in Photochemical/Electrochemical Carboxylation of Olefins with CO2
Qian Wang
Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi, Xinjiang, 844000 China
Search for more papers by this authorYanwei Wang
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorMin Liu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Ganghui Chu
Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi, Xinjiang, 844000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Youai Qiu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
E-mail: [email protected]; [email protected]Search for more papers by this authorQian Wang
Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi, Xinjiang, 844000 China
Search for more papers by this authorYanwei Wang
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorMin Liu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Ganghui Chu
Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi, Xinjiang, 844000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Youai Qiu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
CO2 is an abundant, nontoxic, and renewable C1 feedstock in synthetic chemistry. Direct carboxylation of readily available olefins incorporating CO2 is regarded as a promising strategy to access high value-added carboxylic acids as well as CO2 fixation. However, due to the thermodynamic stability and kinetic inertness of CO2 and the difficulty in controlling the regioselectivity, the carboxylation of olefins with CO2 still remains challenging. Radical-type functionalization with olefins represented a powerful protocol and enabled the development of novel transformations in this realm. More recently, the advance of new technology, such as photoredox catalysis and the renaissance of electrochemistry in organic synthesis, offered access to unique chemical reactivities of radical precursors and provided new solutions to the functionalization of olefins. This review presents the recent advances in the radical-type carboxylation of olefins, which has mainly been achieved through photocatalysis and electrocatalysis in the last decade. In this article, we provide a comprehensive introduction of the progress, summarize the advantages and limitations of current research, and discuss the potential outlook for further development.
Key Scientists
References
- 1(a) Ran, C.-K.; Liao, L.-L.; Gao, T.-Y.; Gui, Y.-Y.; Yu, D.-G. Recent Progress and Challenges in Carboxylation with CO2. Cur. Opin. Green Sustain. Chem. 2021, 32, 100525;
(b) Ran, C.-K.; Xiao, H.-Z.; Liao, L.-L.; Ju, T.; Zhang, W.; Yu, D.-G. Progress and Challenges in Dicarboxylation with CO2. Natl. Sci. Open 2023, 2, 20220024;
10.1360/nso/20220024 Google Scholar(c) He, M.; Sun, Y.; Han, B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angew. Chem. Int. Ed. 2022, 61, e202112835; (d) Liu, X.-F.; Zhang, K.; Tao, L.; Lu, X.-B.; Zhang, W.-Z. Green Chem. Eng. 2022, 3, 125–137; (e) Wang, S.; Feng, T.; Wang, Y.; Qiu, Y. Chem. Asian J. 2022, 17, e202200543; (f) Dou, Q.; Wang, T.; Li, S.; Fang, L.; Zhai, H.; Cheng, B. Recent Advances in Photocatalytic Carboxylation with CO2 via σ-Bond Cleavage. Chin. J. Org. Chem. 2022, 42, 4257–4274.
- 2(a) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Radical Carboxylative Cyclizations and Carboxylations with CO2. Acc. Chem. Res. 2021, 54, 2518–2531; (b) Wang, S.; Xi, C. Recent Advances in Nucleophile- Triggered CO2-Incorporated Cyclization Leading to Heterocycles. Chem. Soc. Rev. 2019, 48, 382–404; (c) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using Carbon Dioxide as a Building Block in Organic Synthesis. Nat. Commun. 2015, 6, 5933; (d) Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A.; Detrembleur, C. Advances in the use of CO2 as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48, 4466–4514; (e) Wang, Y.; Tang, S.; Yang, G.; Wang, S.; Ma, D.; Qiu, Y. Electrocarboxylation of Aryl Epoxides with CO2 for the Facile and Selective Synthesis of β-Hydroxy Acids. Angew. Chem. Int. Ed. 2022, 61, e202207746; (f) Wang, Y.; Zhao, Z.; Pan, D.; Wang, S.; Jia, K.; Ma, D.; Yang, G.; Xue, X.-S.; Qiu, Y. Metal-Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angew. Chem. Int. Ed. 2022, 61, e202210201; (g) Zhao, Z. Liu, Y.; Wang, S.; Tang, S.; Ma, D.; Zhu, Z.; Guo, C.; Qiu, Y. Site-Selective Electrochemical C−H Carboxylation of Arenes with CO2. Angew. Chem. Int. Ed. 2023, 62, e202214710.
- 3(a) Liu, Y.; Li, P.; Wang, Y.; Qiu, Y. Electroreductive Cross-Electrophile Coupling (eXEC) Reactions. Angew. Chem. Int. Ed. 2023, 62, e202306679; (b) Wang, X.; Wang, H.; Sun, Y. Synthesis of Acrylic Acid Derivatives from CO2 and Ethylene. Chem 2017, 3, 211–228; (c) Luo, M.-J.; Xiao, Q.; Li, J.-H. Electro-/Photocatalytic Alkene-Derived Radical Cation Chemistry: Recent Advances in Synthetic Applications. Chem. Soc. Rev. 2022, 51, 7206–7237; (d) Bertuzzi, G.; Cerveri, A.; Lombardi, L.; Bandini, M. Tandem Functionalization-Carboxylation Reactions of π-Systems with CO2. Chin. J. Chem. 2021, 39, 3116–3126.
- 4(a) Seo, H.; Katcher, M.; Jamison, T. Photoredox Activation of Carbon Dioxide for Amino Acid Synthesis in Continuous Flow. Nat. Chem. 2017, 9, 453–456; (b) Meng, Q.-Y.; Wang, S.; Huff, G.; König, B. Ligand-Controlled Regioselective Hydrocarboxylation of Styrenes with CO2 by Combining Visible Light and Nickel Catalysis. J. Am. Chem. Soc. 2018, 140, 3198–3201.
- 5 Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. Visible-Light-Driven Catalytic Reductive Carboxylation with CO2. ACS Catal. 2020, 10, 10871–10885.
- 6 Tortajada, A.; Bçrjesson, M.; Moragas, T.; Martin, R. Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide. Angew. Chem. Int. Ed. 2018, 57, 15948–15982.
- 7 Zhang, Z.; Gong, L.; Zhou, X.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Radical-Type Difunctionalization of Alkenes with CO2. Acta Chim. Sinica 2019, 77, 783–793.
- 8 Rawat, A.; Dhakla, S.; Lama, P.; Pal, T. Fixation of Carbon Dioxide to Aryl/Aromatic Carboxylic Acids. J. CO2 Util. 2022, 59, 101939.
- 9 Fan, Z.; Zhang, Z.; Xi, C. Light-Mediated Carboxylation Using Carbon Dioxide. ChemSusChem 2020, 13, 6201–6218.
- 10 Senboku, H. Electrochemical Fixation of Carbon Dioxide: Synthesis of Carboxylic Acids. Chem. Rec. 2021, 21, 2354–2374.
- 11(a) Murata, K.; Numasawa, N.; Shimomaki, K.; Takaya, J.; Iwasawa, N. Construction of a Visible Light-Driven Hydrocarboxylation Cycle of Alkenes by Thecombined use of Rh(I) and Photoredox Catalysts. Chem. Commun. 2017, 53, 3098–3101; (b) Murata, K.; Numasawa, N.; Shimomaki, K.; Takaya, J.; Iwasawa, N. Construction of a Visible Light-Driven Hydrocarboxylation Cycle of Alkenes by the combined use of Rh(I) and Photoredox Catalysts. Front. Chem. 2019, 7, 371.
- 12 Yatham, V.; Shen, Y.; Martin, R. Catalytic Intermolecular Dicarbofunctionalization of Styrenes with CO2 and Radical Precursors. Angew. Chem. Int. Ed. 2017, 56, 10915–10919.
- 13(a) Chen, L.; Qu, Q.; Ran, C.-K.; Wang, W.; Zhang, W.; He, Y.; Liao, L.-L.; Ye, J.-H.; Yu, D.-G. Photocatalytic Carboxylation of C−N Bonds in Cyclic Amines with CO2 by Consecutive Visible-Light-Induced Electron Transfer. Angew. Chem. Int. Ed. 2023, 62, e202217918; (b) Yang, Z.; Du, Q.; Jiang, Y.; Wang, J. Asymmetric Access of γ-Amino Acids and γ-Amino Phosphonic Acid Derivatives via Copper-Catalyzed Enantioselective and Regioselective Hydroamination. CCS Chem. 2022, 4, 1901–1911; (c) Wang, X.; Chen, Y.; Liang, P.; Chen, J.-Q.; Wu, J. Synthesis of γ-Amino Acids via Photocatalyzed Intermolecular Carboimination of Alkenes. Org. Chem. Front. 2022, 9, 4328–4333.
- 14 Zhang, B.; Yi, Y.; Wu, Z.-Q.; Chen, C.; Xi, C. Photoredox-Catalyzed Dicarbofunctionalization of Styrenes with Amines and CO2: a Convenient access to γ-Amino Acids. Green Chem. 2020, 22, 5961–5965.
- 15 Wu, Z.; Zhai, S.; Luo, M.; Dong, Q.; Wu, S.; Zheng, M. Metal-Free Heterogeneous Photocatalysis for Carbocarboxylation of Alkenes: Efficient Synthesis of γ-Amino Carboxylic Derivatives. Chem. Asian J. 2024, 19, e202301069.
- 16 Hou, H.; Luo, M.; Zhai, S.; Yuan, T.; Zheng, M.; Wang, S. Metal-Free Semiconductors for Visible-Light-Induced Carbocarboxylation of Styrenes with Aliphatic Redox-Active Esters and CO2. Green Chem. 2024, 26, 1317–1321.
- 17 Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Visible Light-Driven Organic Photochemical Synthesis in China. Sci. China Chem. 2019, 62, 24–57.
- 18 Niu, Y.-N.; Jin, X.-H.; Liao, L.-L.; Huang, H.; Yu, B.; Yu, Y.-M.; Yu, D.-G. Visible-Light-Driven External-Photocatalyst-Free Alkylative Carboxylation of Alkenes with CO2. Sci. China Chem. 2021, 64, 1164–1169.
- 19 Vega, K.; Oliveira, A.; König, B.; Paixão, M. Visible-Light-Induced Synthesis of 1,2-Dicarboxyl Compounds from Carbon Dioxide, Carbamoyl-dihydropyridine, and Styrene. Org. Lett. 2024, 26, 860–865.
- 20 Song, L.; Fu, D.-M; Chen, L.; Jiang, Y.-X.; Ye, J.-H.; Zhu, L.; Lan, Y.; Fu, Q.; Yu, D.-G. Visible-Light Photoredox-Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO2. Angew. Chem. Int. Ed. 2020, 59, 21121–21128.
- 21(a) Bähr, S.; Oestreich, M. Electrophilic Aromatic Substitution with Silicon Electrophiles: Catalytic Friedel–Crafts C–H Silylation. Angew. Chem. Int. Ed. 2017, 56, 52–59; (b) Jia, J.; Hu, F.; Xia, Y. Transition- Metal-Catalyzed Nucleophilic Dearomatization of Electron-Deficient Heteroarenes. Synthesis 2022, 54, 92–110.
- 22 Yi, Y.; Fana, Z.; Xi, C. Photoredox-Catalyzed Intermolecular Dearomative Trifluoromethylcarboxylation of Indoles and Heteroanalogues with CO2 and Fluorinated Radical Precursors. Green Chem. 2022, 24, 7894–7899.
- 23(a) Gooßen, L.; Gooßen, K. Decarboxylative Coupling Reactions. Top. Organomet. Chem. 2012, 44, 121–142; (b) Xiao, L.-J.; Ye, M.-C.; Zhou, Q.-L. Nickel-Catalyzed Highly Atom-Economical C–C Coupling Reactions with π Components. Synlett 2019, 30, 361–369.
- 24 Liao, L.-L.; Cao, G.-M; Jiang, Y.-X.; Jin, X.-H.; Hu, X.-L.; Chruma, J.; Sun, G.-Q.; Gui, Y.-Y; Yu, D.-G. α-Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes via Recycling CO2. J. Am. Chem. Soc. 2021, 143, 2812–2821.
- 25 Zhou, C.; Li, M.; Sun, J.; Cheng, J.; Sun, S. Photoredox-Catalyzed α-Aminomethyl Carboxylation of Styrenes with Sodium Glycinates: Synthesis of γ-Amino Acids and γ-Lactams. Org. Lett. 2021, 23, 2895–2899.
- 26(a) Monos, T.; Mcatee, R.; Stephenson, C. Arylsulfonylacetamides as Bifunctional Reagentsfor Alkene Aminoarylation. Science 2018, 361, 1369–1373; (b) Hoque, I.; Chow, S.; Maity, S. Photoredox-Catalyzed Intermolecular Radical Arylthiocyanation/Arylselenocyanation of Alkenes: Access to Aryl-Substituted Alkylthiocyanates/ Alkylselenocyanates. J. Org. Chem. 2019, 84, 3025–3035.
- 27 Wang, H.; Gao, Y.; Zhou, C.; Li, G. Visible-Light-Driven Reductive Carboarylation of Styrenes with CO2 and Aryl Halides. J. Am. Chem. Soc. 2020, 142, 8122–8129.
- 28 Zhang, M.; Yang, L.; Zhou, C.; Fu, L.; Li, G. Visible-Light-Induced Arylcarboxylation of Enamides with CO2 and Aryl Iodides to Synthesize α-Amino Acids. Asian J. Org. Chem. 2022, 11, e202200087.
- 29 Zhai, S.; Wang, R.; Dong, Q.; Cheng, J.; Zheng, M.; Wang, X. A Photochemical Halogen-Atom-Transfer Pathway for the Carboxylation of Alkenes with CO2. Org. Chem. Front. 2023, 10, 4816–4820.
- 30(a) Guo, W.; Wang, Q.; Zhu, J. Selective 1,2-Aminoisothiocyanation of 1,3-Dienes Under Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2021, 60, 4085–4089; (b) Zhang, P.; Zhou, Z.; Zhang, R.; Zhao, Q.; Zhang, C. Cu-Catalyzed Highly Regioselective 1,2-Hydrocarboxylation of 1,3-Dienes with CO2. Chem. Commun. 2020, 56, 11469–11472.
- 31 Zhou, C.; Wang, X.; Yang, L.; Fu, L.; Li, G. Visible-Light-Driven Regioselective Carbocarboxylation of 1,3-Dienes with Organic Halides and CO2. Green Chem. 2022, 24, 6100–6107.
- 32
Duan, D.-S.; Ma, Y.; Liu, Y.-B.; Cheng, F.; Zhu, D.-Y. Visible Light-Induced Decarbon-Carboxylation of Activated Alkenes by Carbon Dioxide. Chin. J. Org. Chem. 2024, DOI: https://doi.org/10.6023/cjoc202312018.
10.6023/cjoc202312018 Google Scholar
- 33 Yuan, P.-F.; Yang, Z.; Zhang, S.-S.; Zhu, C.-M.; Yang, X.-L.; Meng, Q.-Y. Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide. Angew. Chem. Int. Ed. 2024, 63, e202313030.
- 34 Cao, K.-G.; Gao, T.-Y.; Liao, L.-L.; Ran, C.-K.; Jiang, Y.-X.; Zhang, W.; Zhou, Q.; Ye, J.-H.; Lan, Y.; Yu, D.-G. Photocatalytic Carboxylation of Styrenes with CO2 via C=C Double Bond Cleavage. Chin. J. Catal. 2024, 56, 74–80.
- 35 Zhang, W; Lin, S. Electroreductive Carbofunctionalization of Alkenes with Alkyl Bromides via a Radical-Polar Crossover Mechanism. J. Am. Chem. Soc. 2020, 142, 20661–20670.
- 36 Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.; Xu, J.; Wu, J. Visible-Light-Mediated Metal-Free Difunctionalization of Alkenes with CO2 and Silanes or C(sp3)–H Alkanes. Angew. Chem. Int. Ed. 2018, 57, 17220–17224.
- 37(a) Cai, B.-G.; Xuan, J.; Xiao, W.-J. Visible Light-Mediated C–P Bond Formation Reactions. Sci. Bull. 2019, 64, 337–350; (b) Li, C.-X.; Tu, D.-S.; Yao, R.; Yan, H.; Lu, C.-S. Visible-Light-Induced Cascade Reaction of Isocyanides and N-Arylacrylamides with Diphenylphosphine Oxide via Radical C–P and C–C Bond Formation. Org. Lett. 2016, 18, 4928–4931.
- 38 Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Transition Metal-Free Phosphonocarboxylation of Alkenes with Carbon Dioxide via Visible-Light Photoredox Catalysis. Nat. Commun. 2019, 10, 3592.
- 39(a) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Photochemical and Electrochemical Carbon Dioxide Utilization with Organic Compounds. Chin. J. Chem. 2018, 36, 644–659; (b) He, X.; Qiu, L.-Q.; Wang, W.-J.; Chen, K.-H.; He, L.-N. Photocarboxylation with CO2: an Appealing and Sustainable Strategy for CO2 Fixation. Green Chem. 2020, 22, 7301–7320.
- 40 Seo, H.; Liu, A.; Jamison, T. Direct β-Selective Hydrocarboxylation of Styrenes with CO2 Enabled by Continuous Flow Photoredox Catalysis. J. Am. Chem. Soc. 2017, 139, 13969–13972.
- 41 Ye, J.-H.; Miao, M.; Huang, H.; Yan, S.-S.; Yin, Z.-B.; Zhou, W.-J.; Yu, D.-G. Visible-Light-Driven Iron-Promoted Thiocarboxylation of Styrenesand Acrylates with CO2. Angew. Chem. Int. Ed. 2017, 56, 15416–15420.
- 42 Song, L.; Wang, W.; Yue, J.-P.; Jiang, Y.-X.; Wei, M.-K.; Zhang, H.-P.; Yan, S.-S.; Liao, L.-L.; Yu, D.-G. Visible-Light Photocatalytic Di- and Hydro-Carboxylation of Unactivated Alkenes with CO2. Nat. Catal. 2022, 5, 832–838.
- 43 Xiao, H.-Z.; Yu, B.; Yan, S.-S.; Zhang, W.; Li, X.-X.; Bao, Y.; Luo, S.-P.; Ye, J.-H.; Yu, D.-G. Photocatalytic 1,3-Dicarboxylation of Unactivated Alkenes with CO2. Chin. J. Catal. 2023, 50, 222–228.
- 44 Zhang, W.; Chen, Z.; Jiang, Y.-X.; Liao, L.-L.; Wang, W.; Ye, J.-H.; Yu, D.-G. Arylcarboxylation of Unactivated Alkenes with CO2 via Visible- Light Photoredox Catalysis. Nat. Commun. 2023, 14, 3529.
- 45 Yu, B.; Liu, Y.; Xiao, H.-Z.; Zhang, S.-R.; Ran, C.-K.; Song, L.; Jiang, Y.-X.; Li, C.-F.; Ye, J.-H.; Yu, D.-G. Switchable Divergent Di- or Tricarboxylation of Allylic Alcohols with CO2. Chem 2024. DOI: https://doi.org/10.1016/j.chempr.2023.12.005.
- 46 Yuan, T.; Wu, Z.; Zhai, S.; Wang, R.; Wu, S.; Cheng, J.; Zheng, M.; Wang, X. Photosynthetic Fixation of CO2 in Alkenes by Heterogeneous Photoredox Catalysis with Visible Light. Angew. Chem. Int. Ed. 2023, 62, e202304861.
- 47 You, Y.; Kanna, W.; Takano, H.; Hayashi, H.; Maeda, S.; Mita, T. Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials. J. Am. Chem. Soc. 2022, 144, 3685–3695.
- 48 Zhang, W.; Liao, L.-L.; Li, L.; Liu, Y.; Dai, L.-F.; Sun, G.-Q.; Ran, C.-K.; Ye, J.-H.; Lan, Y.; Yu, D.-G. Electroreductive Dicarboxylation of Unactivated Skipped Dienes with CO2. Angew. Chem. Int. Ed. 2023, 62, e202301892.
- 49
Huang, H.; Ye, J.-H.; Zhu, L.; Ran, C.-K.; Miao, M.; Wang, W.; Chen, H.; Zhou, W.-J.; Lan, Y.; Yu, B.; Yu, D.-G. Visible-Light-Driven Anti-Markovnikov Hydrocarboxylation of Acrylates and Styrenes with CO2. CCS Chem. 2020, 2, 1746–1756.
10.31635/ccschem.020.202000374 Google Scholar
- 50 Ju, T.; Zhou, Y.-Q.; Cao, K.-G.; Fu, Q.; Ye, J.-H.; Sun, G.-Q.; Liu, X.-F.; Chen, L.; Liao, L.-L.; Yu, D.-G. Dicarboxylation of Alkenes, Allenes and (Hetero) Arenes with CO2 via Visible-Light Photoredox Catalysis. Nat. Catal. 2021, 4, 304–311.
- 51 Ju, T.; Fu, Q.; Ye, J.-H.; Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Tian, X.-Y.; Luo, S.-P.; Li, J.; Yu, D.-G. Selective and Catalytic Hydrocarboxylation of Enamides and Imines with CO2 to Generate α,α-Disubstituted α-Amino Acids. Angew. Chem. Int. Ed. 2018, 57, 13897–13901.
- 52 Yue, J.-P.; Xu, J.-C.; Luo, H.-T.; Chen, X.-W.; Song, H.-X.; Deng, Y.; Yuan, L.; Ye, J.-H.; Yu, D.-G. Metallaphotoredox-Enabled Aminocarboxylation of Alkenes with CO2. Nat. Catal. 2023, 6, 959–968.
- 53 Zhou, W.-J.; Wang, Z.-H.; Liao, L.-L.; Jiang, Y.-X.; Cao, K.-G.; Ju, T.; Li, Y.; Cao, G.-M.; Yu, D.-G. Reductive Dearomative Arylcarboxylation of Indoles with CO2 via Visible-Light Photoredox Catalysis. Nat. Commun. 2020, 11, 3263.
- 54 Zhang, B.; Li, T.-T.; Mao, Z.-C.; Jiang, M.; Zhang, Z.; Zhao, K.; Qu, W.-Y.; Xiao, W.-J.; Chen, J.-R. Enantioselective Cyanofunctionalization of Aromatic Alkenes via Radical Anions. J. Am. Chem. Soc. 2024, DOI: https://doi.org/10.1021/jacs.3c10439.
- 55 Komatsu, H.; Fujimura, Y.; Senboku, H.; Tokuda, M. Efficient Electrochemical Dicarboxylation of Phenyl-substituted Alkenes: Synthesis of 1-Phenylalkane-1,2-dicarboxylic Acids. Synlett 2001, 3, 418–420.
- 56 Yuan, G.-Q.; Jiang, H.-F.; Lin, C.; Liao, S.-J. Efficient Electrochemical Synthesis of 2-Arylsuccinic Acids from CO2 and Aryl-Substituted Alkenes with Nickel as the Cathode. Electrochim. Acta 2008, 53, 2170–2176.
- 57 Li, C.-H.; Yuan, G.-Q.; Ji, X.-C.; Wang, X.-J.; Ye, J.-S.; Jiang, H.-F. Highly Regioselective Electrochemical Synthesis of Dioic Acids from Dienes and Carbon Dioxide. Electrochim. Acta 2011, 56, 1529–1534.
- 58 Ding, C.-L.; Zhong, J.-S.; Yan, H.; Ye, K.-Y. Electrochemical Hydro- and Deuterocarboxylation of Allenes. Synthesis 2023, DOI: https://doi.org/10.1055/a-2200-5332.
- 59 Alkayal, A.; Tabas, V.; Montanaro, S.; Wright, I.; Malkov, A.; Buckley, B. Harnessing Applied Potential: Selective β-Hydrocarboxylation of Substituted Olefins. J. Am. Chem. Soc. 2020, 142, 1780–1785.
- 60 Sheta, A.; Alkayal, A.; Mashaly, M.; Said, S.; Elmorsy, S.; Malkov, A.; Buckley, B. Selective Electrosynthetic Hydrocarboxylation of α,β-Unsaturated Esters with Carbon Dioxide. Angew. Chem. Int. Ed. 2021, 60, 21832–21837.
- 61 Sheta, A.; Mashaly, M.; SSaid, S.; Elmorsy, S.; Malkov, A.; Buckley, B. Selective α,δ-Hydrocarboxylation of Conjugated Dienes utilizing CO2 and Electrosynthesis. Chem. Sci. 2020, 11, 9109–9114.
- 62 Gao, X.-T.; Zhang, Z.; Wang, X.; Tian, J.-S.; Xie, S.-L.; Zhou, F.; Zhou, J. Direct Electrochemical Defluorinative Carboxylation of α-CF3 Alkenes with Carbon Dioxide. Chem. Sci. 2020, 11, 10414–10420.