Who is Who in the Carbene Chemistry of N-Sulfonyl Hydrazones
Paramasivam Sivaguru
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
Search for more papers by this authorYongzhen Pan
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
Search for more papers by this authorNan Wang
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
Search for more papers by this authorCorresponding Author
Xihe Bi
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
E-mail: [email protected]Search for more papers by this authorParamasivam Sivaguru
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
Search for more papers by this authorYongzhen Pan
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
Search for more papers by this authorNan Wang
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
Search for more papers by this authorCorresponding Author
Xihe Bi
Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
Over the past few decades, N-sulfonyl hydrazones have been recognized as alternative precursors for hazardous diazo compounds in organic synthesis, allowing for diverse innovative and original chemical transformations that were otherwise difficult to achieve. This critical review summarizes the major advancements in the carbene chemistry of N-sulfonyl hydrazones. The contents of this review are organized based on research conducted by leading scientists who have made significant contributions to this field. The individual carbene transfer reactions and their mechanisms, as well as the potential applications in the synthesis of natural products and complex bioactive molecules, are thoroughly discussed.
References
- 1
Curtius, T. Ueber Die Einwirkung von Salpetriger Säure Auf Salzsauren Glycocolläther. Ber. Dtsch. Chem. Ges. 1883, 16, 2230–2231.
10.1002/cber.188301602136 Google Scholar
- 2
Curtius, T. Ueber Diazoessigsäure Und Ihre Derivate. J. für Prakt. Chemie 1888, 38, 396–440.
10.1002/prac.18880380130 Google Scholar
- 3 Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Modern Organic Synthesis with α-Diazocarbonyl Compounds. Chem. Rev. 2015, 115, 9981–10080.
- 4 Xia, Y.; Qiu, D.; Wang, J. Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chem. Rev. 2017, 117, 13810–13889.
- 5 Zhang, X.; Liu, Z.; Sivaguru, P.; Bi, X. Silver Carbenoids Derived from Diazo Compounds: A Historical Perspective on Challenges and Opportunities. Chem Catal. 2021, 1, 599–630.
- 6 Dong, S.; Liu, X.; Feng, X. Asymmetric Catalytic Rearrangements with α-Diazocarbonyl Compounds. Acc. Chem. Res. 2022, 55, 415–428.
- 7 Green, S. P.; Wheelhouse, K. M.; Payne, A. D.; Hallett, J. P.; Miller, P. W.; Bull, J. A. Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org. Process Res. Dev. 2020, 24, 67–84.
- 8 Jia, M.; Ma, S. New Approaches to the Synthesis of Metal Carbenes. Angew. Chem. Int. Ed. 2016, 55, 9134–9166.
- 9 Zhu, D.; Chen, L.; Fan, H.; Yao, Q.; Zhu, S. Recent Progress on Donor and Donor–Donor Carbenes. Chem. Soc. Rev. 2020, 49, 908–950.
- 10 Wang, K.; Wang, J. 47.1.1.4.12 Synthesis of Alkenes by Palladium- Catalyzed Cross-Coupling Reactions with Carbene Precursors. In Knowledge Updates 2023/1, Georg Thieme Verlag KG, Stuttgart, 2023, pp. 1–40.
- 11 Vaishya, V.; Singhal, R.; Kriplani, T.; Pilania, M. Recent Advances in Transition-Metal-Catalyzed Reactions of N-Tosylhydrazones. Synthesis 2022, 54, 3941–3961.
- 12 Singhal, R.; Choudhary, S. P.; Malik, B.; Pilania, M. Emerging Trends in N-Tosylhydrazone Mediated Transition-Metal-Free Reactions. ChemistrySelect 2022, 7, e202200134.
- 13 Radolko, J.; Ehlers, P.; Langer, P. Recent Advances in Transition-Metal-Catalyzed Reactions of N-Tosylhydrazones. Adv. Synth. Catal. 2021, 363, 3616–3654.
- 14 Xia, Y.; Wang, J. N-Tosylhydrazones: Versatile Synthons in the Construction of Cyclic Compounds. Chem. Soc. Rev. 2017, 46, 2306–2362.
- 15 Xia, Y.; Wang, J. Transition-Metal-Catalyzed Cross-Coupling with Ketones or Aldehydes via N-Tosylhydrazones. J. Am. Chem. Soc. 2020, 142, 10592–10605.
- 16 Arunprasath, D.; Devi Bala, B.; Sekar, G. Luxury of N-Tosylhydrazones in Transition-Metal-Free Transformations. Adv. Synth. Catal. 2019, 361, 1172–1207.
- 17 Wang, H.; Deng, Y.-H.; Shao, Z. An Update of N-Tosylhydrazones: Versatile Reagents for Metal-Catalyzed and Metal-Free Coupling Reactions. Synthesis 2018, 50, 2281–2306.
- 18 Qiu, D.; Mo, F.; Zhang, Y.; Wang, J. Recent Advances in Transition- Metal-Catalyzed Cross-Coupling Reactions with N-Tosylhydrazones. Adv. Organomet. Chem. 2017, 67, 151–219.
- 19 Barluenga, J.; Valdés, C. Tosylhydrazones: New Uses for Classic Reagents in Palladium-Catalyzed Cross-Coupling and Metal-Free Reactions. Angew. Chem. Int. Ed. 2011, 50, 7486–7500.
- 20 Bamford, W. R.; Stevens, T. S. 924. The Decomposition of Toluene-p- Sulphonylhydrazones by Alkali. J. Chem. Soc. 1952, 4735–4740.
- 21 Adlington, R. M.; Barrett, A. G. M. Recent Applications of the Shapiro Reaction. Acc. Chem. Res. 1983, 16, 55–59.
- 22
Aggarwal, V. K.; Alonso, E.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Porcelloni, M.; Studley, J. R. Catalytic Asymmetric Synthesis of Epoxides from Aldehydes Using Sulfur Ylides with In Situ Generation of Diazocompounds. Angew. Chem. Int. Ed. 2001, 40, 1430–1433.
10.1002/1521-3773(20010417)40:8<1430::AID-ANIE1430>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 23 Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis. Eur. J. Org. Chem. 2005, 2005, 1479–1492.
- 24 Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F. N-Tosylhydrazones as Reagents for Cross-Coupling Reactions: A Route to Polysubstituted Olefins. Angew. Chem. Int. Ed. 2007, 46, 5587–5590.
- 25 Liu, Z.; Raveendra Babu, K.; Wang, F.; Yang, Y.; Bi, X. Influence of Sulfonyl Substituents on the Decomposition of N-Sulfonylhydrazones at Room Temperature. Org. Chem. Front. 2019, 6, 121–124.
- 26 Zhang, X.; Tian, C.; Wang, Z.; Sivaguru, P.; Nolan, S. P.; Bi, X. Fluoroalkyl N-Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catal. 2021, 11, 8527–8537.
- 27 Liu, Z.; Sivaguru, P.; Zanoni, G.; Bi, X. N-Triftosylhydrazones: A New Chapter for Diazo-Based Carbene Chemistry. Acc. Chem. Res. 2022, 55, 1763–1781.
- 28 Shao, Z.; Zhang, H. N-Tosylhydrazones: Versatile Reagents for Metal- Catalyzed and Metal-Free Cross-Coupling Reactions. Chem. Soc. Rev. 2012, 41, 560–572.
- 29 Barroso, R.; Cabal, M.; Valdés, C. Pd-Catalyzed Auto-Tandem Cascades Based on N-Sulfonylhydrazones: Hetero- and Carbocyclization Processes. Synthesis 2017, 28, 4434–4447.
- 30 Paraja, M.; Plaza, M.; Valdés, C. Transition-Metal-Free Reactions between Boronic Acids and N-Sulfonylhydrazones or Diazo Compounds: Reductive Coupling Processes and Beyond. Synlett 2017, 28, 2373–2389.
- 31 Aggarwal, V. K.; Alonso, E.; Bae, I.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Patel, M.; Porcelloni, M.; Richardson, J.; Stenson, R. A.; Studley, J. R.; Vasse, J.-L.; Winn, C. L. A New Protocol for the in Situ Generation of Aromatic, Heteroaromatic, and Unsaturated Diazo Compounds and Its Application in Catalytic and Asymmetric Epoxidation of Carbonyl Compounds. Extensive Studies to Map out Scope and Limitations, and Rationalizati. J. Am. Chem. Soc. 2003, 125, 10926–10940.
- 32 Aggarwal, V. K.; Patel, M.; Studley, J. Synthesis of Epoxides from Aldehydes and Tosylhydrazone Salts Catalysed by Triphenylarsine: Complete Trans Selectivity for All Combinations of Coupling Partners. Chem. Commun. 2002, 1514–1515.
- 33 Aggarwal, V. K.; Bae, I.; Lee, H.-Y. Application of Sulfur Ylide Mediated Epoxidations in the Asymmetric Synthesis of β-Hydroxy-δ-Lactones. Synthesis of a Mevinic Acid Analogue and (+)-Prelactone B. Tetrahedron 2004, 60, 9725–9733.
- 34
Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Application of Chiral Sulfides to Catalytic Asymmetric Aziridination and Cyclopropanation with In Situ Generation of the Diazo Compound. Angew. Chem. Int. Ed. 2001, 40, 1433–1436. .
10.1002/1521-3773(20010417)40:8<1433::AID-ANIE1433>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 35 Aggarwal, V. K.; Vasse, J.-L. Asymmetric Sulfur Ylide Mediated Aziridination: Application in the Synthesis of the Side Chain of Taxol. Org. Lett. 2003, 5, 3987–3990.
- 36 Adams, L. A.; Aggarwal, V. K.; Bonnert, R. V.; Bressel, B.; Cox, R. J.; Shepherd, J.; de Vicente, J.; Walter, M.; Whittingham, W. G.; Winn, C. L. Diastereoselective Synthesis of Cyclopropane Amino Acids Using Diazo Compounds Generated in situ. J. Org. Chem. 2003, 68, 9433–9440.
- 37 Aggarwal, V. K.; de Vicente, J.; Bonnert, R. V. Catalytic Cyclopropanation of Alkenes Using Diazo Compounds Generated in situ. A Novel Route to 2-Arylcyclopropylamines. Org. Lett. 2001, 3, 2785–2788.
- 38 Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; de Vicente, J. Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to High E Selectivity with Semi-Stabilizing Groups in Wittig Olefinations. J. Am. Chem. Soc. 2003, 125, 6034–6035.
- 39 Florentino, L.; Aznar, F.; Valdés, C. Synthesis of (Z)-N-Alkenylazoles and Pyrroloisoquinolines from α-N-Azoleketones through Pd-Catalyzed Tosylhydrazone Cross-Couplings. Chem. – A Eur. J. 2013, 19, 10506–10510.
- 40 Jiménez-Aquino, A.; Vega, J. A.; Trabanco, A. A.; Valdés, C. A General Synthesis of α-Trifluoromethylstyrenes through Palladium-Catalyzed Cross-Couplings with 1,1,1-Trifluoroacetone Tosylhydrazone. Adv. Synth. Catal. 2014, 356, 1079–1084.
- 41 Paraja, M.; Barroso, R.; Cabal, M. P.; Valdés, C. Synthesis of Highly Substituted Polyenes by Palladium-Catalyzed Cross–Couplings of Sterically Encumbered Alkenyl Bromides and N-Tosylhydrazones. Adv. Synth. Catal. 2017, 359, 1058–1062.
- 42 Barluenga, J.; Quiñones, N.; Cabal, M.; Aznar, F.; Valdés, C. Tosylhydrazide-Promoted Palladium-Catalyzed Reaction of β-Aminoketones with o-Dihaloarenes: Combining Organocatalysis and Transition-Metal Catalysis. Angew. Chem. Int. Ed. 2011, 50, 2350–2353.
- 43 Paraja, M.; Carmen Pérez-Aguilar, M.; Valdés, C. The Pd-Catalyzed Synthesis of Benzofused Carbo- and Heterocycles through Carbene Migratory Insertion/Carbopalladation Cascades with Tosylhydrazones. Chem. Commun. 2015, 51, 16241–16243.
- 44 Paraja, M.; Valdés, C. Pd-Catalyzed Cascade Reactions between o-Iodo-N-Alkenylanilines and Tosylhydrazones: Novel Approaches to the Synthesis of Polysubstituted Indoles and 1,4-Dihydroquinolines. Chem. Commun. 2016, 52, 6312–6315.
- 45 Barroso, R.; Valencia, R. A.; Cabal, M.-P.; Valdés, C. Pd-Catalyzed Autotandem C–C/C–C Bond-Forming Reactions with Tosylhydrazones: Synthesis of Spirocycles with Extended π-Conjugation. Org. Lett. 2014, 16, 2264–2267.
- 46 Barroso, R.; Cabal, M.; Badía-Laiño, R.; Valdés, C. Structurally Diverse π-Extended Conjugated Polycarbo- and Heterocycles through Pd-Catalyzed Autotandem Cascades. Chem. – A Eur. J. 2015, 21, 16463–16473.
- 47 Paraja, M.; Valdés, C. Pd-Catalyzed Autotandem Reactions with N-Tosylhydrazones. Synthesis of Condensed Carbo- and Heterocycles by Formation of a C–C Single Bond and a C═C Double Bond on the Same Carbon Atom. Org. Lett. 2017, 19, 2034–2037.
- 48 Barroso, R.; Paraja, M.; Cabal, M.-P.; Valdés, C. Synthesis of 1,1-Disubstituted Indenes and Dihydronaphthalenes through C–C/C–C Bond-Forming Pd-Catalyzed Autotandem Reactions. Org. Lett. 2017, 19, 4086–4089.
- 49 Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Metal-Free Carbon–Carbon Bond-Forming Reductive Coupling between Boronic Acids and Tosylhydrazones. Nat. Chem. 2009, 1, 494–499.
- 50 Pérez-Aguilar, M. C.; Valdés, C. Olefination of Carbonyl Compounds through Reductive Coupling of Alkenylboronic Acids and Tosylhydrazones. Angew. Chem. Int. Ed. 2012, 51, 5953–5957.
- 51 Plaza, M.; Pérez-Aguilar, M. C.; Valdés, C. Stereoselective Csp3–Csp2 Bond-Forming Reactions by Transition-Metal-Free Reductive Coupling of Cyclic Tosylhydrazones with Boronic Acids. Chem. – A Eur. J. 2016, 22, 6253–6257.
- 52 Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Straightforward Synthesis of Ethers: Metal-Free Reductive Coupling of Tosylhydrazones with Alcohols or Phenols. Angew. Chem. Int. Ed. 2010, 49, 4993–4996.
- 53 García-Muñoz, A.; Tomás-Gamasa, M.; Pérez-Aguilar, M. C.; Cuevas-Yañez, E.; Valdés, C. Straightforward Reductive Esterification of Carbonyl Compounds with Carboxylic Acids through Tosylhydrazone Intermediates. Eur. J. Org. Chem. 2012, 2012, 3925–3928.
- 54 Plaza, M.; Valdés, C. Stereoselective Domino Carbocyclizations of γ- and δ-Cyano-N-Tosylhydrazones with Alkenylboronic Acids with Formation of Two Different C(sp3)–C(sp2) Bonds on a Quaternary Stereocenter. J. Am. Chem. Soc. 2016, 138, 12061–12064.
- 55 Florentino, L.; López, L.; Barroso, R.; Cabal, M.; Valdés, C. Synthesis of Pyrrolidines by a Csp3-Csp3/Csp3-N Transition-Metal-Free Domino Reaction of Boronic Acids with γ-Azido-N-Tosylhydrazones. Angew. Chem. Int. Ed. 2021, 60, 1273–1280.
- 56 Plaza, M.; Parisotto, S.; Valdés, C. Heterocyclization and Spirocyclization Processes Based on Domino Reactions of N-Tosylhydrazones and Boronic Acids Involving Intramolecular Allylborylations of Nitriles. Chem. – A Eur. J. 2018, 24, 14836–14843.
- 57 Plaza, M.; Paraja, M.; Florentino, L.; Valdés, C. Domino Synthesis of Benzo-Fused β,γ-Unsaturated Ketones from Alkenylboronic Acids and N-Tosylhydrazone-Tethered Benzonitriles. Org. Lett. 2019, 21, 632–635.
- 58 López, L.; Cabal, M.; Valdés, C. Construction of NH-Unprotected Spiropyrrolidines and Spiroisoindolines by [4+1] Cyclizations of γ-Azidoboronic Acids with Cyclic N-Sulfonylhydrazones. Angew. Chem. Int. Ed. 2022, 61, e202113370.
- 59 Zhao, X.; Wu, G.; Zhang, Y.; Wang, J. Copper-Catalyzed Direct Benzylation or Allylation of 1,3-Azoles with N-Tosylhydrazones. J. Am. Chem. Soc. 2011, 133, 3296–3299.
- 60 Xiao, Q.; Ling, L.; Ye, F.; Tan, R.; Tian, L.; Zhang, Y.; Li, Y.; Wang, J. Copper-Catalyzed Direct ortho-Alkylation of N-Iminopyridinium Ylides with N-Tosylhydrazones. J. Org. Chem. 2013, 78, 3879–3885.
- 61 Hu, F.; Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Rhodium(III)-Catalyzed ortho Alkenylation of N-Phenoxyacetamides with N-Tosylhydrazones or Diazoesters through C-H Activation. Angew. Chem. Int. Ed. 2014, 53, 1364–1367.
- 62 Xu, S.; Wu, G.; Ye, F.; Wang, X.; Li, H.; Zhao, X.; Zhang, Y.; Wang, J. Copper(I)-Catalyzed Alkylation of Polyfluoroarenes through Direct C–H Bond Functionalization. Angew. Chem. Int. Ed. 2015, 54, 4669–4672.
- 63 Liu, Z.; Tan, H.; Wang, L.; Fu, T.; Xia, Y.; Zhang, Y.; Wang, J. Transition-Metal-Free Intramolecular Carbene Aromatic Substitution/Büchner Reaction: Synthesis of Fluorenes and [6,5,7]Benzo-fused Rings. Angew. Chem. Int. Ed. 2015, 54, 3056–3060.
- 64 Zhou, Q.; Li, S.; Zhang, Y.; Wang, J. Rhodium(II)- or Copper(I)-Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp2)−H Bonds: Access to Substituted 1H-Indenes. Angew. Chem. Int. Ed. 2017, 56, 16013–16017.
- 65 Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. Coupling of N-Tosylhydrazones with Terminal Alkynes Catalyzed by Copper(I): Synthesis of Trisubstituted Allenes. Angew. Chem. Int. Ed. 2011, 50, 1114–1117.
- 66 Hossain, M. L.; Ye, F.; Zhang, Y.; Wang, J. CuI-Catalyzed Cross- Coupling of N-Tosylhydrazones with Terminal Alkynes: Synthesis of 1,3-Disubstituted Allenes. J. Org. Chem. 2013, 78, 1236–1241.
- 67 Ye, F.; Hossain, M. L.; Xu, Y.; Ma, X.; Xiao, Q.; Zhang, Y.; Wang, J. Synthesis of Allyl Allenes through Three-Component Cross-Coupling Reaction of N-Tosylhydrazones, Terminal Alkynes, and Allyl Halides. Chem. – An Asian J. 2013, 8, 1404–1407.
- 68 Ye, F.; Wang, C.; Ma, X.; Hossain, M. L.; Xia, Y.; Zhang, Y.; Wang, J. Synthesis of Terminal Allenes through Copper-Mediated Cross- Coupling of Ethyne with N-Tosylhydrazones or α-Diazoesters. J. Org. Chem. 2015, 80, 647–652.
- 69 Zhou, L.; Ye, F.; Ma, J.; Zhang, Y.; Wang, J. Palladium-Catalyzed Oxidative Cross-Coupling of N-Tosylhydrazones or Diazoesters with Terminal Alkynes: A Route to Conjugated Enynes. Angew. Chem. Int. Ed. 2011, 50, 3510–3514.
- 70 Ye, F.; Ma, X.; Xiao, Q.; Li, H.; Zhang, Y.; Wang, J. C(sp)–C(sp3) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethynes. J. Am. Chem. Soc. 2012, 134, 5742–5745.
- 71 Chu, W.; Guo, F.; Yu, L.; Hong, J.; Liu, Q.; Mo, F.; Zhang, Y.; Wang, J. Cu(I)-Catalyzed Asymmetric Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethynes: Enantioselective Construction of C(sp)—C(sp3 ) Bonds. Chin. J. Chem. 2018, 36, 217–222.
- 72 Zhang, Z.; Zhou, Q.; Yu, W.; Li, T.; Wu, G.; Zhang, Y.; Wang, J. Cu(I)-Catalyzed Cross-Coupling of Terminal Alkynes with Trifluoromethyl Ketone N-Tosylhydrazones: Access to 1,1-Difluoro-1,3-Enynes. Org. Lett. 2015, 17, 2474–2477.
- 73 Zhou, L.; Ye, F.; Zhang, Y.; Wang, J. Pd-Catalyzed Three-Component Coupling of N-Tosylhydrazone, Terminal Alkyne, and Aryl Halide. J. Am. Chem. Soc. 2010, 132, 13590–13591.
- 74 Huo, J.; Zhong, K.; Xue, Y.; Lyu, M.; Ping, Y.; Liu, Z.; Lan, Y.; Wang, J. Palladium-Catalyzed Enantioselective Carbene Insertion into Carbon–Silicon Bonds of Silacyclobutanes. J. Am. Chem. Soc. 2021, 143, 12968–12973.
- 75 Huo, J.; Zhong, K.; Xue, Y.; Lyu, M.; Ping, Y.; Ouyang, W.; Liu, Z.; Lan, Y.; Wang, J. Ligand-Controlled Site- and Enantioselective Carbene Insertion into Carbon-Silicon Bonds of Benzosilacyclobutanes. Chem. – A Eur. J. 2022, 28, e202200191.
- 76 Bao, Z.; Huang, M.; Xu, Y.; Zhang, X.; Wu, Y.; Wang, J. Selective Formal Carbene Insertion into Carbon-Boron Bonds of Diboronates by N-Trisylhydrazones. Angew. Chem. Int. Ed. 2023, 62, e202216356.
- 77 Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Formal Carbon Insertion of N-Tosylhydrazone into B–B and B–Si Bonds: gem-Diborylation and gem-Silylborylation of sp3 Carbon. Org. Lett. 2014, 16, 448–451.
- 78 Liu, Z.; Tan, H.; Fu, T.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J. Pd(0)-Catalyzed Carbene Insertion into Si–Si and Sn–Sn Bonds. J. Am. Chem. Soc. 2015, 137, 12800–12803.
- 79 Xiao, Q.; Ma, J.; Yang, Y.; Zhang, Y.; Wang, J. Pd-Catalyzed C═C Double-Bond Formation by Coupling of N-Tosylhydrazones with Benzyl Halides. Org. Lett. 2009, 11, 4732–4735.
- 80 Wang, X.; Xu, Y.; Deng, Y.; Zhou, Y.; Feng, J.; Ji, G.; Zhang, Y.; Wang, J. Pd–Carbene Migratory Insertion: Application to the Synthesis of Trifluoromethylated Alkenes and Dienes. Chem. – A Eur. J. 2014, 20, 961–965.
- 81 Yang, Q.; Chai, H.; Liu, T.; Yu, Z. Palladium-Catalyzed Cross-Coupling of Cyclopropylmethyl N-Tosylhydrazones with Aromatic Bromides: An Easy Access to Multisubstituted 1,3-Butadienes. Tetrahedron Lett. 2013, 54, 6485–6489.
- 82 Wang, K.; Chen, S.; Zhang, H.; Xu, S.; Ye, F.; Zhang, Y.; Wang, J. Pd(0)-Catalyzed Cross-Coupling of Allyl Halides with α-Diazocarbonyl Compounds or N-Mesylhydrazones: Synthesis of 1,3-Diene Compounds. Org. Biomol. Chem. 2016, 14, 3809–3820.
- 83 Zhou, L.; Ye, F.; Zhang, Y.; Wang, J. Cyclopropylmethyl Palladium Species from Carbene Migratory Insertion: New Routes to 1,3-Butadienes. Org. Lett. 2012, 14, 922–925.
- 84 Zhou, Y.; Ye, F.; Wang, X.; Xu, S.; Zhang, Y.; Wang, J. Synthesis of Alkenylphosphonates through Palladium-Catalyzed Coupling of α-Diazo Phosphonates with Benzyl or Allyl Halides. J. Org. Chem. 2015, 80, 6109–6118.
- 85 Li, S.; Li, M.; Li, S.-S.; Wang, J. Pd-Catalyzed Coupling of Benzyl Bromides with BMIDA-Substituted N-Tosylhydrazones: Synthesis of trans-Alkenyl MIDA Boronates. Chem. Commun. 2022, 58, 399–402.
- 86 Xia, Y.; Hu, F.; Liu, Z.; Qu, P.; Ge, R.; Ma, C.; Zhang, Y.; Wang, J. Palladium-Catalyzed Diarylmethyl C(sp3)–C(sp2) Bond Formation: A New Coupling Approach toward Triarylmethanes. Org. Lett. 2013, 15, 1784–1787.
- 87 Xia, Y.; Hu, F.; Xia, Y.; Liu, Z.; Ye, F.; Zhang, Y.; Wang, J. Synthesis of Di- and Triarylmethanes through Palladium-Catalyzed Reductive Coupling of N-Tosylhydrazones and Aryl Bromides. Synthesis 2016, 49, 1073–1086.
- 88 Zhang, Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Palladium-Catalyzed Carbonylation/Acyl Migratory Insertion Sequence. Angew. Chem. Int. Ed. 2010, 49, 1139–1142.
- 89 Xiao, Q.; Wang, B.; Tian, L.; Yang, Y.; Ma, J.; Zhang, Y.; Chen, S.; Wang, J. Palladium-Catalyzed Three-Component Reaction of Allenes, Aryl Iodides, and Diazo Compounds: Approach to 1,3-Dienes. Angew. Chem. Int. Ed. 2013, 52, 9305–9308.
- 90 Hu, F.; Xia, Y.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Palladium-Catalyzed Three-Component Reaction of N-Tosylhydrazone, Norbornene and Aryl Halide. Org. Biomol. Chem. 2014, 12, 3590–3593.
- 91 Liu, Y.; Zhang, Z.; Zhang, S.; Zhang, Y.; Wang, J.; Zhang, Z. Pd0-Catalyzed Four-Component Reaction of Aryl Halide, CO, N-Tosylhydrazone, and Amine. Chem. – An Asian J. 2018, 13, 3658–3663.
- 92 Wu, G.; Deng, Y.; Luo, H.; Li, T.; Zhang, Y.; Wang, J. Palladium-Catalyzed Cascade Reactions of α-Halo-N-Tosylhydrazones, Indoles, and Aryl Iodides. Asian J. Org. Chem. 2016, 5, 874–877.
- 93 Zhang, Z.; Liu, Y.; Ling, L.; Li, Y.; Dong, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Pd-Catalyzed Carbonylation of Diazo Compounds at Atmospheric Pressure: A Catalytic Approach to Ketenes. J. Am. Chem. Soc. 2011, 133, 4330–4341.
- 94 Zhou, Q.; Gao, Y.; Xiao, Y.; Yu, L.; Fu, Z.; Li, Z.; Wang, J. Palladium-Catalyzed Carbene Coupling of N-Tosylhydrazones and Arylbromides to Synthesize Cross-Conjugated Polymers. Polym. Chem. 2019, 10, 569–573.
- 95 Yao, X.-Q.; Wang, Y.-S.; Wang, J. Palladium-Catalyzed Carbene Coupling Polymerization: Synthesis of E-Poly(Arylene Vinylene)s. Chem. Commun. 2022, 58, 4032–4035.
- 96 Liu, Z.; Li, Q.; Liao, P.; Bi, X. Silver-Catalyzed [2+1] Cyclopropenation of Alkynes with Unstable Diazoalkanes: N-Nosylhydrazones as Room-Temperature Decomposable Diazo Surrogates. Chem. – A Eur. J. 2017, 23, 4756–4760.
- 97 Liu, Z.; Li, Q.; Yang, Y.; Bi, X. Silver(I)-Promoted Insertion into X–H (X = Si, Sn, and Ge) Bonds with N-Nosylhydrazones. Chem. Commun. 2017, 53, 2503–2506.
- 98 Bergstrom, B. D.; Nickerson, L. A.; Shaw, J. T.; Souza, L. W. Transition Metal Catalyzed Insertion Reactions with Donor/Donor Carbenes. Angew. Chem. Int. Ed. 2021, 60, 6864–6878.
- 99 Liu, Z.; Liu, B.; Zhao, X.; Wu, Y.; Bi, X. Silver-Catalyzed Cross-Olefination of Donor and Acceptor Diazo Compounds: Use of N-Nosylhydrazones as Diazo Surrogate. Eur. J. Org. Chem. 2017, 2017, 928–932.
- 100 Zhang, X.; Li, L.; Sivaguru, P.; Zanoni, G.; Bi, X. Highly Electrophilic Silver Carbenes. Chem. Commun. 2022, 58, 13699–13715.
- 101 Chen, Z.; Rong, M.-Y.; Nie, J.; Zhu, X.-F.; Shi, B.-F.; Ma, J.-A. Catalytic Alkylation of Unactivated C(sp3)–H Bonds for C(sp3)–C(sp3) Bond Formation. Chem. Soc. Rev. 2019, 48, 4921–4942.
- 102 Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Catalytic Carbene Insertion into C−H Bonds. Chem. Rev. 2010, 110, 704–724.
- 103 Davies, H. M. L.; Liao, K. Dirhodium Tetracarboxylates as Catalysts for Selective Intermolecular C–H Functionalization. Nat. Rev. Chem. 2019, 3, 347–360.
- 104 He, Y.; Huang, Z.; Wu, K.; Ma, J.; Zhou, Y.-G.; Yu, Z. Recent Advances in Transition-Metal-Catalyzed Carbene Insertion to C–H Bonds. Chem. Soc. Rev. 2022, 51, 2759–2852.
- 105 Liu, Z.; Cao, S.; Yu, W.; Wu, J.; Yi, F.; Anderson, E. A.; Bi, X. Site-Selective C–H Benzylation of Alkanes with N-Triftosylhydrazones Leading to Alkyl Aromatics. Chem 2020, 6, 2110–2124.
- 106 Yang, Y.; Liu, S.; Li, S.; Liu, Z.; Liao, P.; Sivaguru, P.; Lu, Y.; Gao, J.; Bi, X. Site-Selective C−H Allylation of Alkanes: Facile Access to Allylic Quaternary sp3-Carbon Centers. Angew. Chem. Int. Ed. 2023, 62, e202214519.
- 107 Liu, Z.; Wang, H.; Sivaguru, P.; Nolan, S. P.; Song, Q.; Yu, W.; Jiang, X.; Anderson, E. A.; Bi, X. Silver-Catalyzed Site-Selective C(sp3)−H Benzylation of Ethers with N-Triftosylhydrazones. Nat. Commun. 2022, 13, 1674.
- 108 Fumagalli, G.; Stanton, S.; Bower, J. F. Recent Methodologies That Exploit C–C Single-Bond Cleavage of Strained Ring Systems by Transition Metal Complexes. Chem. Rev. 2017, 117, 9404–9432.
- 109 Hashimoto, T.; Naganawa, Y.; Maruoka, K. Desymmetrizing Asymmetric Ring Expansion of Cyclohexanones with α-Diazoacetates Catalyzed by Chiral Aluminum Lewis Acid. J. Am. Chem. Soc. 2011, 133, 8834–8837.
- 110 Li, W.; Liu, X.; Tan, F.; Hao, X.; Zheng, J.; Lin, L.; Feng, X. Catalytic Asymmetric Homologation of α-Ketoesters with α-Diazoesters: Synthesis of Succinate Derivatives with Chiral Quaternary Centers. Angew. Chem. Int. Ed. 2013, 52, 10883–10886.
- 111 Xia, Y.; Liu, Z.; Liu, Z.; Ge, R.; Ye, F.; Hossain, M.; Zhang, Y.; Wang, J. Formal Carbene Insertion into C–C Bond: Rh(I)-Catalyzed Reaction of Benzocyclobutenols with Diazoesters. J. Am. Chem. Soc. 2014, 136, 3013–3015.
- 112 Yada, A.; Fujita, S.; Murakami, M. Enantioselective Insertion of a Carbenoid Carbon into a C–C Bond To Expand Cyclobutanols to Cyclopentanols. J. Am. Chem. Soc. 2014, 136, 7217–7220.
- 113 Liu, Z.; Sivaguru, P.; Zanoni, G.; Anderson, E. A.; Bi, X. Catalyst-Dependent Chemoselective Formal Insertion of Diazo Compounds into C−C or C−H Bonds of 1,3-Dicarbonyl Compounds. Angew. Chem. Int. Ed. 2018, 57, 8927–8931.
- 114 Liu, Z.; Zhang, X.; Virelli, M.; Zanoni, G.; Anderson, E. A.; Bi, X. Silver-Catalyzed Regio- and Stereoselective Formal Carbene Insertion into Unstrained C−C σ-Bonds of 1,3-Dicarbonyls. iScience 2018, 8, 54–60.
- 115 Ning, Y.; Song, Q.; Sivaguru, P.; Wu, L.; Anderson, E. A.; Bi, X. Ag-Catalyzed Insertion of Alkynyl Carbenes into C–C Bonds of β-Ketocarbonyls: A Formal C(sp2) Insertion. Org. Lett. 2022, 24, 631–636.
- 116 Wu, Y.; Ning, Y.; Han, X.; Liao, P.; Xia, Y.; Sivaguru, P.; Bi, X. Silver- Catalyzed Vinylcarbene Insertion into C–C Bonds of 1,3-Diketones with Vinyl-N-Triftosylhydrazones. Org. Lett. 2022, 24, 8136–8141.
- 117 Furuya, T.; Kamlet, A. S.; Ritter, T. Catalysis for Fluorination and Trifluoromethylation. Nature 2011, 473, 470–477.
- 118 Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Functionalization of Fluorinated Molecules by Transition-Metal-Mediated C–F Bond Activation to Access Fluorinated Building Blocks. Chem. Rev. 2015, 115, 931–972.
- 119 Jaroschik, F. Picking One out of Three: Selective Single C−F Activation in Trifluoromethyl Groups. Chem. – A Eur. J. 2018, 24, 14572–14582.
- 120 Li, Y.; Luo, J.; Jiang, Y. C–F Bond Functionalizations via Fluorinated Carbenes. Org. Chem. Front. 2023, 10, 5782–5804.
- 121 Mertens, L.; Koenigs, R. M. Fluorinated Diazoalkanes – a Versatile Class of Reagents for the Synthesis of Fluorinated Compounds. Org. Biomol. Chem. 2016, 14, 10547–10556.
- 122 Mykhailiuk, P. K. 2,2,2-Trifluorodiazoethane (CF3CHN2): A Long Journey since 1943. Chem. Rev. 2020, 120, 12718–12755.
- 123 Zhang, X.; Liu, Z.; Yang, X.; Dong, Y.; Virelli, M.; Zanoni, G.; Anderson, E. A.; Bi, X. Use of Trifluoroacetaldehyde N-Tfsylhydrazone as a Trifluorodiazoethane Surrogate and Its Synthetic Applications. Nat. Commun. 2019, 10, 284.
- 124 Zhang, X.; Li, L.; Zanoni, G.; Han, X.; Bi, X. Direct gem-Difluoroalkenylation of X−H Bonds with Trifluoromethyl Ketone N-Triftosylhydrazones for Synthesis of Tetrasubstituted Heteroatomic gem-Difluoroalkenes. Chem. – A Eur. J. 2022, 28, e202200280.
- 125 Li, L.; Zhang, X.; Ning, Y.; Zhang, X.; Liu, B.; Zhang, Z.; Sivaguru, P.; Zanoni, G.; Li, S.; Anderson, E. A.; Bi, X. Carbodefluorination of Fluoroalkyl Ketones via a Carbene-Initiated Rearrangement Strategy. Nat. Commun. 2022, 13, 4280.
- 126 Bezdek, M. J.; Guo, S.; Chirik, P. J. Coordination-Induced Weakening of Ammonia, Water, and Hydrazine X–H Bonds in a Molybdenum Complex. Science 2016, 354, 730–733.
- 127 Zhao, J.; Goldman, A. S.; Hartwig, J. F. Oxidative Addition of Ammonia to Form a Stable Monomeric Amido Hydride Complex. Science 2005, 307, 1080–1082.
- 128
Aviv, I.; Gross, Z. Iron Porphyrins Catalyze the Synthesis of Non-Protected Amino Acid Esters from Ammonia and Diazoacetates. Chem. Commun. 2006, 43, 4477–4479.
10.1039/b609265a Google Scholar
- 129 Álvarez, M.; Álvarez, E.; Fructos, M. R.; Urbano, J.; Pérez, P. J. Copper-Induced Ammonia N–H Functionalization. Dalt. Trans. 2016, 45, 14628–14633.
- 130 Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Enantioselective Iron-Catalysed O–H Bond Insertions. Nat. Chem. 2010, 2, 546–551.
- 131 Liu, Z.; Yang, Y.; Song, Q.; Li, L.; Zanoni, G.; Liu, S.; Xiang, M.; Anderson, E. A.; Bi, X. Chemoselective Carbene Insertion into the N−H Bonds of NH3·H2O. Nat. Commun. 2022, 13, 7649.
- 132 Liu, Z.; Zhang, X.; Zanoni, G.; Bi, X. Silver-Catalyzed Cyclopropanation of Alkenes Using N-Nosylhydrazones as Diazo Surrogates. Org. Lett. 2017, 19, 6646–6649.
- 133 Wu, Y.; Cao, S.; Douair, I.; Maron, L.; Bi, X. Computational Insights into Different Mechanisms for Ag-, Cu-, and Pd-Catalyzed Cyclopropanation of Alkenes and Sulfonyl Hydrazones. Chem. – A Eur. J. 2021, 27, 5999–6006.
- 134 Doyle, M. P.; Yan, M. Effective and Highly Stereoselective Coupling with Vinyldiazomethanes to Form Symmetrical Trienes. J. Org. Chem. 2002, 67, 602–604.
- 135 Yang, Y.; Liu, Z.; Song, Q.; Sivaguru, P.; Zanoni, G.; Wang, K.; Bi, Q.; Bi, X. The Merger of Vinyl-N-Triftosylhydrazones and Silver Catalysis to Enable Stereoselective Vinylcyclopropanation of Alkenes. Chem Catal. 2022, 2, 563–577.
- 136 Ning, Y.; Huo, M.; Wu, L.; Bi, X. Silver-Catalyzed Cyclopropanation of Alkenes with Alkynyl N-Nosylhydrazones Leading to Alkynyl Cyclopropanes. Chem. Commun. 2022, 58, 3485–3488.
- 137 Davies, H. M. L.; Clark, D. M.; Alligood, D. B.; Eiband, G. R. Mechanistic Aspects of Formal [3 + 4] Cycloadditions between Vinylcarbenoids and Furans. Tetrahedron 1987, 43, 4265–4270.
- 138 Davies, H. M. L.; Ahmed, G.; Churchill, M. R. Asymmetric Synthesis of Highly Functionalized 8-Oxabicyclo[3.2.1]octene Derivatives. J. Am. Chem. Soc. 1996, 118, 10774–10782.
- 139 Liu, Z.; Yang, Y.; Jiang, X.; Song, Q.; Zanoni, G.; Liu, S.; Bi, X. Dearomative [4 + 3] Cycloaddition of Furans with Vinyl-N-Triftosylhydrazones by Silver Catalysis: Stereoselective Access to Oxa-Bridged Seven-Membered Bicycles. Org. Chem. Front. 2022, 9, 2444–2452.
- 140 Fang, Z.; Ma, Y.; Liu, S.; Bai, H.; Li, S.; Ning, Y.; Zanoni, G.; Liu, Z. Silver-Catalyzed [4 + 3] Cycloaddition of 1,3-Dienes with Alkenyl-N- Triftosylhydrazones: A Practical Approach to 1,4-Cycloheptadienes. Org. Chem. Front. 2022, 9, 4426–4434.
- 141 Jurczyk, J.; Woo, J.; Kim, S. F.; Dherange, B. D.; Sarpong, R.; Levin, M. D. Single-Atom Logic for Heterocycle Editing. Nat. Synth. 2022, 1, 352–364.
- 142 Joynson, B. W.; Ball, L. T. Skeletal Editing: Interconversion of Arenes and Heteroarenes. Helv. Chim. Acta 2023, 106, e202200182.
- 143 Liu, Z.; Sivaguru, P.; Ning, Y.; Wu, Y.; Bi, X. Skeletal Editing of (Hetero)Arenes Using Carbenes. Chem. – A Eur. J. 2023, 29, e202301227.
- 144 Koronatov, A. N.; Rostovskii, N. V.; Khlebnikov, A. F.; Novikov, M. S. Rh(II)-Catalyzed Ring Expansion of Pyrazoles with Diazocarbonyl Compounds as a Method for the Preparation of 1,2-Dihydropyrimidines. J. Org. Chem. 2018, 83, 9210–9219.
- 145 Liu, S.; Yang, Y.; Song, .; Liu, Z.; Lu, Y.; Wang, Z.; Sivaguru, P.; Bi, X. Tunable Molecular Editing of Indoles with Fluoroalkyl Carbenes. Nat. Chem. 2023, DOI: 10.1038/s41557-024-01468-2
- 146 Li, L.; Ning, Y.; Chen, H.; Ning, Y.; Sivaguru, P.; Liao, P.; Zhu, Q.; Ji, Y.; de Ruiter, G.; Bi, X. Dearomative Insertion of Fluoroalkyl Carbenes into Azoles Leading to Fluoroalkyl Heterocycles with a Quaternary Center. Angew. Chem. Int. Ed. 2024, 63, e202313807.
- 147 Li, L.; Sivaguru, P.; Wei, D.; Liu, M.; Zhu, Q.; Dong, S.; Casali, E.; Li, N.; Zanoni, G.; Bi, X. Silver-Catalyzed Transformation of Epoxides to Cyclopropanes using N-triftosylhydrazones. Nat. Commun. 2024, 15, 1951.
- 148 Zhu, S.-F.; Zhou, Q.-L. Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions. Acc. Chem. Res. 2012, 45, 1365–1377.
- 149 Wang, Y.; Wen, X.; Cui, X.; Wojtas, L.; Zhang, X. P. Asymmetric Radical Cyclopropanation of Alkenes with In Situ-Generated Donor- Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis. J. Am. Chem. Soc. 2017, 139, 1049–1052.
- 150 Zhang, X.; Ning, Y.; Tian, C.; Zanoni, G.; Bi, X. Asymmetric [2+1] Cycloaddition of Difluoroalkyl-Substituted Carbenes with Alkenes under Rhodium Catalysis: Synthesis of Chiral Difluoroalkyl-Substituted Cyclopropanes. iScience 2023, 26, 105896.
- 151 Zhang, X.; Sivaguru, P.; Zanoni, G.; Han, X.; Tong, M.; Bi, X. Catalytic Asymmetric C(sp3)–H Carbene Insertion Approach to Access Enantioenriched 3-Fluoroalkyl 2,3-Dihydrobenzofurans. ACS Catal. 2021, 11, 14293–14301.
- 152
Zhang, X.; Song, Q.; Liu, S.; Sivaguru, P.; Liu, Z.; Yang, Y.; Ning, Y.; de Ruiter, G.; Bi, X. Enantiodivergent Dearomative Skeletal Ring Expansion of Indoles through Carbon Atom Insertion. Research Square 2024, DOI: https://doi.org/10.21203/rs.3.rs-3424402/v1.
10.21203/rs.3.rs-3424402/v1 Google Scholar
- 153 Paul, N. D.; Chirila, A.; Lu, H.; Zhang, X. P.; de Bruin, B. Carbene Radicals in Cobalt(II)–Porphyrin-Catalysed Carbene Carbonylation Reactions; A Catalytic Approach to Ketenes. Chem. – A Eur. J. 2013, 19, 12953–12958.
- 154 Tang, Z.; Mandal, S.; Paul, N. D.; Lutz, M.; Li, P.; van der Vlugt, J. I.; de Bruin, B. Rhodium Catalysed Conversion of Carbenes into Ketenes and Ketene Imines Using PNN Pincer Complexes. Org. Chem. Front. 2015, 2, 1561–1577.
- 155 Paul, N. D.; Mandal, S.; Otte, M.; Cui, X.; Zhang, X. P.; de Bruin, B. Metalloradical Approach to 2H-Chromenes. J. Am. Chem. Soc. 2014, 136, 1090–1096.
- 156 Das, B. G.; Chirila, A.; Tromp, M.; Reek, J. N. H.; de Bruin, B. CoIII–Carbene Radical Approach to Substituted 1H-Indenes. J. Am. Chem. Soc. 2016, 138, 8968–8975.
- 157 Lee, W.-C. C.; Wang, D.-S.; Zhang, C.; Xie, J.; Li, B.; Zhang, X. P. Asymmetric Radical Cyclopropanation of Dehydroaminocarboxylates: Stereoselective Synthesis of Cyclopropyl α-Amino Acids. Chem 2021, 7, 1588–1601.
- 158 Wang, X.; Ke, J.; Zhu, Y.; Deb, A.; Xu, Y.; Zhang, X. P. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes. J. Am. Chem. Soc. 2021, 143, 11121–11129.
- 159 Ke, J.; Lee, W.-C. C.; Wang, X.; Wang, Y.; Wen, X.; Zhang, X. P. Metalloradical Activation of In Situ-Generated α-Alkynyldiazomethanes for Asymmetric Radical Cyclopropanation of Alkenes. J. Am. Chem. Soc. 2022, 144, 2368–2378.
- 160 Lee, W.-C. C.; Wang, D.-S.; Zhu, Y.; Zhang, X. P. Iron(III)-Based Metalloradical Catalysis for Asymmetric Cyclopropanation via a Stepwise Radical Mechanism. Nat. Chem. 2023, 15, 1569–1580.
- 161 Wang, Y.; Wen, X.; Cui, X.; Zhang, X. P. Enantioselective Radical Cyclization for Construction of 5-Membered Ring Structures by Metalloradical C–H Alkylation. J. Am. Chem. Soc. 2018, 140, 4792–4796.
- 162 Wen, X.; Wang, Y.; Zhang, X. P. Enantioselective Radical Process for Synthesis of Chiral Indolines by Metalloradical Alkylation of Diverse C(sp3)–H Bonds. Chem. Sci. 2018, 9, 5082–5086.
- 163 Lee, W.-C. C.; Wang, J.; Zhu, Y.; Zhang, X. P. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J. Am. Chem. Soc. 2023, 145, 11622–11632.
- 164 Cheung, W.-H.; Zheng, S.-L.; Yu, W.-Y.; Zhou, G.-C.; Che, C.-M. Ruthenium Porphyrin Catalyzed Intramolecular Carbenoid C−H Insertion. Stereoselective Synthesis of Cis-Disubstituted Oxygen and Nitrogen Heterocycles. Org. Lett. 2003, 5, 2535–2538.
- 165 Zheng, S.-L.; Yu, W.-Y.; Xu, M.-X.; Che, C.-M. First Synthesis of Naturally Occurring (±)-Epi-Conocarpan. Tetrahedron Lett. 2003, 44, 1445–1447.
- 166 Reddy, A. R.; Zhou, C.; Guo, Z.; Wei, J.; Che, C. Ruthenium–Porphyrin-Catalyzed Diastereoselective Intramolecular Alkyl Carbene Insertion into C–H Bonds of Alkyl Diazomethanes Generated In Situ from N-Tosylhydrazones. Angew. Chem. Int. Ed. 2014, 53, 14175–14180.
- 167 Reddy, A. R.; Hao, F.; Wu, K.; Zhou, C.; Che, C. Cobalt(II) Porphyrin-Catalyzed Intramolecular Cyclopropanation of N-Alkyl Indoles/Pyrroles with Alkylcarbene: Efficient Synthesis of Polycyclic N-Heterocycles. Angew. Chem. Int. Ed. 2016, 55, 1810–1815.
- 168 Wang, E.-H.; Ping, Y.-J.; Li, Z.-R.; Qin, H.; Xu, Z.-J.; Che, C.-M. Iron Porphyrin Catalyzed Insertion Reaction of N-Tosylhydrazone-Derived Carbenes into X–H (X = Si, Sn, Ge) Bonds. Org. Lett. 2018, 20, 4641–4644.
- 169 Cuevas-Yañez, E.; Serrano, J. M.; Huerta, G.; Muchowski, J. M.; Cruz-Almanza, R. Copper Carbenoid Mediated N-Alkylation of Imidazoles and Its Use in a Novel Synthesis of Bifonazole. Tetrahedron 2004, 60, 9391–9396.
- 170 Hamze, A.; Tréguier, B.; Brion, J.-D.; Alami, M. Copper-Catalyzed Reductive Coupling of Tosylhydrazones with Amines: A Convenient Route to α-Branched Amines. Org. Biomol. Chem. 2011, 9, 6200–6204.
- 171 Aziz, J.; Brion, J.; Hamze, A.; Alami, M. Copper Acetoacetonate [Cu(acac)2]/BINAP-Promoted Csp3–N Bond Formation via Reductive Coupling of N-Tosylhydrazones with Anilines. Adv. Synth. Catal. 2013, 355, 2417–2429.
- 172 Aziz, J.; Frison, G.; Gómez, M.; Brion, J.-D.; Hamze, A.; Alami, M. Copper-Catalyzed Coupling of N-Tosylhydrazones with Amines: Synthesis of Fluorene Derivatives. ACS Catal. 2014, 4, 4498–4503.
- 173 Roche, M.; Frison, G.; Brion, J.-D.; Provot, O.; Hamze, A.; Alami, M. Csp2–N Bond Formation via Ligand-Free Pd-Catalyzed Oxidative Coupling Reaction of N-Tosylhydrazones and Indole Derivatives. J. Org. Chem. 2013, 78, 8485–8495.
- 174 Roche, M.; Bignon, J.; Brion, J.-D.; Hamze, A.; Alami, M. Tandem One-Pot Palladium-Catalyzed Coupling of Hydrazones, Haloindoles, and Amines: Synthesis of Amino-N-Vinylindoles and Their Effect on Human Colon Carcinoma Cells. J. Org. Chem. 2014, 79, 7583–7592.
- 175 Lawson, M.; Hamze, A.; Peyrat, J.-F.; Bignon, J.; Dubois, J.; Brion, J.-D.; Alami, M. An Efficient Coupling of N-Tosylhydrazones with 2-Halopyridines: Synthesis of 2-α-Styrylpyridines Endowed with Antitumor Activity. Org. Biomol. Chem. 2013, 11, 3664–3673.
- 176 Tréguier, B.; Lawson, M.; Bernadat, G.; Bignon, J.; Dubois, J.; Brion, J.-D.; Alami, M.; Hamze, A. Synthesis of a 3-(α-Styryl)benzo[b]thiophene Library via Bromocyclization of Alkynes and Palladium-Catalyzed Tosylhydrazones Cross-Couplings: Evaluation as Antitubulin Agents. ACS Comb. Sci. 2014, 16, 702–710.
- 177 Lamaa, D.; Messe, E.; Gandon, V.; Alami, M.; Hamze, A. Toward a Greener Barluenga–Valdés Cross-Coupling: Microwave-Promoted C–C Bond Formation with a Pd/PEG/H2O Recyclable Catalytic System. Org. Lett. 2019, 21, 8708–8712.
- 178 Li, W.; Shuai, W.; Sun, H.; Xu, F.; Bi, Y.; Xu, J.; Ma, C.; Yao, H.; Zhu, Z.; Xu, S. Design, Synthesis and Biological Evaluation of Quinoline-Indole Derivatives as Anti-Tubulin Agents Targeting the Colchicine Binding Site. Eur. J. Med. Chem. 2019, 163, 428–442.
- 179 Soussi, M. A.; Provot, O.; Bernadat, G.; Bignon, J.; Desravines, D.; Dubois, J.; Brion, J.; Messaoudi, S.; Alami, M. Iso Combreta Quinazolines: Potent Cytotoxic Agents with Antitubulin Activity. ChemMedChem 2015, 10, 1392–1402.
- 180 Khelifi, I.; Naret, T.; Renko, D.; Hamze, A.; Bernadat, G.; Bignon, J.; Lenoir, C.; Dubois, J.; Brion, J.-D.; Provot, O.; Alami, M. Design, Synthesis and Anticancer Properties of IsoCombretaQuinolines as Potent Tubulin Assembly Inhibitors. Eur. J. Med. Chem. 2017, 127, 1025–1034.
- 181 Zhang, K.; El Bouakher, A.; Levaique, H.; Bignon, J.; Retailleau, P.; Alami, M.; Hamze, A. Pyrrolo-Imidazo[1,2-a]Pyridine Scaffolds through a Sequential Coupling of N-Tosylhydrazones with Imidazopyridines and Reductive Cadogan Annulation, Synthetic Scope, and Application. J. Org. Chem. 2019, 84, 13807–13823.
- 182 Naret, T.; Khelifi, I.; Provot, O.; Bignon, J.; Levaique, H.; Dubois, J.; Souce, M.; Kasselouri, A.; Deroussent, A.; Paci, A.; Varela, P. F.; Gigant, B.; Alami, M.; Hamze, A. 1,1-Diheterocyclic Ethylenes Derived from Quinaldine and Carbazole as New Tubulin-Polymerization Inhibitors: Synthesis, Metabolism, and Biological Evaluation. J. Med. Chem. 2019, 62, 1902–1916.
- 183 Naret, T.; Bzeih, T.; Retailleau, P.; Alami, M.; Hamze, A. One-Pot Selective Functionalization of Nitrogen-Containing Heterocycles with N-tosylhydrazones and Amines. Adv. Synth. Catal. 2018, 360, 584–594.
- 184 Li, X.; Liu, X.; Chen, H.; Wu, W.; Qi, C.; Jiang, H. Copper-Catalyzed Aerobic Oxidative Transformation of Ketone-Derived N-Tosyl Hydrazones: An Entry to Alkynes. Angew. Chem. Int. Ed. 2014, 53, 14485–14489.
- 185 Gao, Y.; Xiong, W.; Chen, H.; Wu, W.; Peng, J.; Gao, Y.; Jiang, H. Pd-Catalyzed Highly Regio- and Stereoselective Formation of C–C Double Bonds: An Efficient Method for the Synthesis of Benzofuran-, Dihydrobenzofuran-, and Indoline-Containing Alkenes. J. Org. Chem. 2015, 80, 7456–7467.
- 186 Yin, B.; Zhang, X.; Zhang, X.; Peng, H.; Zhou, W.; Liu, B.; Jiang, H. Access to Polysubstituted Indoles or Benzothiophenes via Palladium- Catalyzed Cross-Coupling of Furfural Tosylhydrazones with 2-Iodoanilines or 2-Iodothiophenols. Chem. Commun. 2015, 51, 6126–6129.
- 187 Huang, Y.; Zhou, P.; Wu, W.; Jiang, H. Selective Construction of 2-Substituted Benzothiazoles from o-Iodoaniline Derivatives S8 and N-Tosylhydrazones. J. Org. Chem. 2018, 83, 2460–2466.
- 188 Jin, Y.; Li, C.; Wu, W.; Jiang, H. Regioselective Synthesis of 1,4-Dienes via Palladium-Catalyzed Oxidative Allylation of N-Tosylhydrazones. Adv. Synth. Catal. 2023, 365, 2338–2343.
- 189 Peng, J.; Gao, Y.; Zhu, C.; Liu, B.; Gao, Y.; Hu, M.; Wu, W.; Jiang, H. Synthesis of Polysubstituted 3-Amino Pyrroles via Palladium-Catalyzed Multicomponent Reaction. J. Org. Chem. 2017, 82, 3581–3588.
- 190 Huang, Y.; Yu, Y.; Zhu, Z.; Zhu, C.; Cen, J.; Li, X.; Wu, W.; Jiang, H. Copper-Catalyzed Cyanation of N-Tosylhydrazones with Thiocyanate Salt as the “CN” Source. J. Org. Chem. 2017, 82, 7621–7627.
- 191 Huang, Y.; Li, X.; Wang, X.; Yu, Y.; Zheng, J.; Wu, W.; Jiang, H. Copper-Catalyzed Cyanothiolation to Incorporate a Sulfur-Substituted Quaternary Carbon Center. Chem. Sci. 2017, 8, 7047–7051.
- 192 Zhu, C.; Chen, P.; Zhu, R.; Lin, Z.; Wu, W.; Jiang, H. C–N Bond Formation via Palladium-Catalyzed Carbene Insertion into N–N Bonds: Inhibiting the General 1,2-Migration Process of Ylide Intermediates. Chem. Commun. 2017, 53, 2697–2700.
- 193 Dai, Q.; Jiang, Y.; Guo, S.; Yu, J.-T.; Cheng, J. 3-Aza π-Allyl Palladium Derived from Imino Migration in Palladium-Carbene: MCRs toward Multiple Substituted Indole Skeleton. Chem. Commun. 2015, 51, 14781–14784.
- 194 Dai, Q.; Jiang, Y.; Yu, J.-T.; Cheng, J. Palladium-Catalyzed Three-Component Reaction of N-Tosyl Hydrazones, Isonitriles and Amines Leading to Amidines. Chem. Commun. 2015, 51, 16645–16647.
- 195 Chu, H.; Dai, Q.; Jiang, Y.; Cheng, J. Synthesis of 2-Amino-3-Hydroxy- 3H-Indoles via Palladium-Catalyzed One-Pot Reaction of Isonitriles, Oxygen, and N-Tosylhydrazones Derived from 2-Acylanilines. J. Org. Chem. 2017, 82, 8267–8272.
- 196 Sun, S.; Yu, J.-T.; Jiang, Y.; Cheng, J. Cs2CO3-Promoted Carboxylation of N-Tosylhydrazones with Carbon Dioxide toward α-Arylacrylic Acids. J. Org. Chem. 2015, 80, 2855–2860.
- 197 Xiong, H.; Wu, X.; Wang, H.; Sun, S.; Yu, J.; Cheng, J. The Reaction of o-Aminoacetophenone N-Tosylhydrazone and CO2 toward 1,4-Dihydro-2H-3,1-benzoxazin-2-ones. Adv. Synth. Catal. 2019, 361, 3538–3542.
- 198 Sun, S.; Hu, W.; Gu, N.; Cheng, J. Palladium-Catalyzed Multi-Component Reactions of N-Tosylhydrazones, 2-Iodoanilines and CO2 towards 4-Aryl-2-Quinolinones. Chem. – A Eur. J. 2016, 22, 18729–18732.
- 199 Yu, Y.; Chakraborty, P.; Song, J.; Zhu, L.; Li, C.; Huang, X. Easy Access to Medium-Sized Lactones through Metal Carbene Migratory Insertion Enabled 1,4-Palladium Shift. Nat. Commun. 2020, 11, 461.
- 200 Yu, Y.; Ma, L.; Xia, J.; Xin, L.; Zhu, L.; Huang, X. A Modular Approach to Dibenzo-fused Ε-Lactams: Palladium-Catalyzed Bridging-C−H Activation. Angew. Chem. Int. Ed. 2020, 59, 18261–18266.
- 201 Zhang, H.; Yu, Y.; Huang, S.; Huang, X. Palladium-Catalyzed Cascade Reaction of o-Bromobenzaldehydes with N-Sulfonylhydrazones: An Efficient Approach to the Naphthalene Skeleton. Adv. Synth. Catal. 2019, 361, 1576–1581.
- 202 Zhu, L.; Ren, X.; Yu, Y.; Ou, P.; Wang, Z.-X.; Huang, X. Palladium-Catalyzed Three-Component Coupling Reaction of o-Bromobenzaldehyde, N-Tosylhydrazone, and Methanol. Org. Lett. 2020, 22, 2087–2092.
- 203 Ding, M.; Ou, P.; Li, X.; Yu, Y.; Niu, M.; Yang, Y.; Huang, Y.; Wang, Z.; Huang, X. Alkyne Insertion Enabled Vinyl to Acyl 1,5-Palladium Migration: Rapid Access to Substituted 5-Membered-Dihydrobenzofurans and Indolines. Angew. Chem. Int. Ed. 2023, 62, e202300703.
- 204 Zhao, G.; Wu, Y.; Wu, H.-H.; Yang, J.; Zhang, J. Pd/GF-Phos-Catalyzed Asymmetric Three-Component Coupling Reaction to Access Chiral Diarylmethyl Alkynes. J. Am. Chem. Soc. 2021, 143, 17983–17988.
- 205 Yang, B.; Cao, K.; Zhao, G.; Yang, J.; Zhang, J. Pd/Ming-Phos-Catalyzed Asymmetric Three-Component Arylsilylation of N-Sulfonylhydrazones: Enantioselective Synthesis of gem-Diarylmethine Silanes. J. Am. Chem. Soc. 2022, 144, 15468–15474.
- 206 Sun, Y.; Ma, C.; Li, Z.; Zhang, J. Palladium/GF-Phos-Catalyzed Asymmetric Carbenylative Amination to Access Chiral Pyrrolidines and Piperidines. Chem. Sci. 2022, 13, 11150–11155.
- 207 Pang, Y.; He, Q.; Li, Z.-Q.; Yang, J.-M.; Yu, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Rhodium-Catalyzed B–H Bond Insertion Reactions of Unstabilized Diazo Compounds Generated in situ from Tosylhydrazones. J. Am. Chem. Soc. 2018, 140, 10663–10668.
- 208 Zou, H.-N.; Zhao, Y.-T.; Yang, L.-L.; Huang, M.-Y.; Zhang, J.-W.; Huang, M.-L.; Zhu, S.-F. Catalytic Asymmetric Synthesis of Chiral Propargylic Boron Compounds through B–H Bond Insertion Reactions. ACS Catal. 2022, 12, 10654–10660.
- 209 Yang, L.-L.; Ouyang, J.; Zou, H.-N.; Zhu, S.-F.; Zhou, Q.-L. Enantioselective Insertion of Alkynyl Carbenes into Si–H Bonds: An Efficient Access to Chiral Propargylsilanes and Allenylsilanes. J. Am. Chem. Soc. 2021, 143, 6401–6406.