Immobilizing Triphenylamine with Photoredox Inert Sr2+ Forming Sr-MOF with Controlled Electron Migration for Photocatalytic Oxidation of Thiols to Disulfides
Ying-Xia Wang
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorFang Zheng
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorDong-Xia Song
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorBao-Yue Niu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorLu-Qian Deng
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorCorresponding Author
Xian-Ming Zhang
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Key Laboratory of Interface Science and Engineering in Advanced Material (Ministry of Education), College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
E-mail: [email protected]Search for more papers by this authorYing-Xia Wang
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorFang Zheng
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorDong-Xia Song
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorBao-Yue Niu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorLu-Qian Deng
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorCorresponding Author
Xian-Ming Zhang
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, Shanxi, 030006 China
Key Laboratory of Interface Science and Engineering in Advanced Material (Ministry of Education), College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
The photocatalytic oxidative coupling of thiols is one of the most popular methods to synthesize the disulfides. Triphenylamine and its derivatives (TPAs) are promising for the above reaction, but suffer from the easy polymerization and difficult separation. To overcome these obstacles while controlling the photogenerated electrons transfer directly to target substrates, herein, we constructed one TPA-based metal-organic framework (MOF), (Me2NH2)[Sr(TCBPA)]·DMA·3H2O (1), by direct self-assembly of tris(4′-carboxybiphenyl)amine (H3TCBPA) and photoredox inert strontium ion (Sr2+). DFT calculations revealed that the valence band maximum (VBM) and the conduction band minimum (CBM) are mainly located on TCBPA3–, successfully inhibiting the undesirable electron migration to metal nodes. Experimental results indicated that 1 displays superior performance than homogeneous H3TCBPA, which may result from the abundant π···π and C—H···π interactions between the well-arranged TCBPA3– and the build-in electric field between the anionic framework and the Me2NH2+. This work highlights that immobilizing TPAs into MOFs is one promising approach to designing heterogeneous photocatalysts for the synthesis of disulfides by oxidative coupling of thiols.
Supporting Information
Filename | Description |
---|---|
cjoc202300677-sup-0001-supinfo.pdfPDF document, 2.8 MB |
Appendix S1: Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Wu, Z.; Pratt, D. A. Radical Substitution Provides a Unique Route to Disulfides. J. Am. Chem. Soc. 2020, 142, 10284–10290.
- 2 Han, Y.; Liu, C.; Xu, H.; Cao, Y. Engineering Reversible Hydrogels for 3D Cell cCulture and Release Using Diselenide Catalyzed Fast Disulfide Formation. Chin. J. Chem. 2022, 40, 1578–1584.
- 3 Mohammadi, M. K.; Ghammamy, S.; Zarrinabadi, S.; Farjam, M. H.; Sabayan, B. Tributylammonium Halochromates/Silica Gel: Simple Reagents for Oxidative Coupling of Thiols to Symmetrical Disulfides. Chin. J. Chem. 2010, 28, 2199–2203.
- 4 Wu, N.; Wu, D.; Shen, Y.; Liu, L.-e.; Ding, L.; Wu, Y.; Jian, N. Fast and Sensitive Detection of Highly ToxicThiophenol Using β-CD Modified Nanofibers Membrane with Promoted Fluorescence Response. Sens. Actuators B Chem. 2023, 394, 134431.
- 5 Wang, Z.; Li, J.; Chen, J.; Cao, Z.; Li, H.; Cao, Y.; Li, Q.; She, M.; Liu, P.; Zhang, S.; Li, J. A NIR Fluorescent Probe for Imaging Thiophenol in The Living System and Revealing Thiophenol-Induced Oxidative Stress. Chin. Chem. Lett. 2023, 34, 108507–108511.
- 6 Qiu, W.; Shi, S.; Li, R.; Lin, X.; Rao, L.; Sun, Z. A Mild, General, Metal-Free Method for Desulfurization of Thiols and Disulfides Induced by Visible-Light. Chin. J. Chem. 2021, 39, 1255–1258.
- 7 Chou, C.-L. Sulfur in Coals: A Review of Geochemistry and Origins. Int. J. Coal Geol. 2012, 100, 1–13.
- 8 Yi, S.-L.; Li, M.-C.; Hu, X.-Q.; Mo, W.-M.; Shen, Z.-L. An Efficient and Convenient Method for the Preparation of Disulfides from Thiols Using Oxygen as Oxidant Catalyzed by tert-Butyl Nitrite. Chin. Chem. Lett. 2016, 27, 1505–1508.
- 9 Huang, H.; Ash, J.; Kang, J. Y. Base-Controlled Fe(Pc)-Catalyzed Aerobic Oxidation of Thiols for the Synthesis of S-S and S-P(O) Bonds. Org. Biomol. Chem. 2018, 16, 4236–4242.
- 10 Zhang, Y.; Yang, D.; Li, Y.; Zhao, X.; Wang, B.; Qu, J. Biomimetic Catalytic Oxidative Coupling of Thiols Using Thiolate-Bridged Dinuclear Metal Complexes Containing Iron in Water under Mild Conditions. Catal. Sci. Technol. 2019, 9, 6492–6502.
- 11 Abu-Omar, M. M.; Khan, S. I. Molecular Rhenium(V) Oxotransferases: Oxidation of Thiols to Disulfides with Sulfoxides. The Case of Substrate-Inhibitedcatalysis. Inorg. Chem. 1998, 37, 4979–4985.
- 12 Kirihara, M. Aerobic Oxidation of Organic Compounds Catalyzed by Vanadium Compounds. Coord. Chem. Rev. 2011, 255, 2281–2302.
- 13 Corma, A.; Ródenas, T.; Sabater, M. J. Aerobic Oxidation of Thiols to Disulfides by Heterogeneous Gold Catalysts. Chem. Sci. 2012, 3, 398–404.
- 14 Burmistrova, D. A.; Galustyan, A.; Smolyaninov, I. V.; Berberova, N. T. Substituted o-Aminophenols as Redox-Mediators in the Thiol Oxidation to Unsymmetrical Disulfides. J. Electrochem. Soc. 2021, 168, 055501.
- 15 Bołt, M.; Żak, P. Application of Bulky NHC-Rhodium Complexes in Efficient S–Si and S–S Bond forming Reactions. Inorg. Chem. 2021, 60, 17579–17585.
- 16 Lu, X.; Cheng, T.; Geletii, Y. V.; Hill, C. L. Catalytic System for Aerobic Oxidation That Simultaneously Functions as Its Own Redox Buffer. Inorg. Chem. 2023, 62, 2404–2414.
- 17 Song, T.; Zhang, Y.; Wang, C.; Li, Y.; Yang, Y. Photocatalytic Aerobic Oxysulfonylation of Alkynes to Access β-keto Sulfones Catalyzed by OVs-N-Nb2O5. Chin. J. Chem. 2022, 40, 2618–2624.
- 18 Wu, W.-B.; Wong, Y.-C.; Tan, Z.-K.; Wu, J. Photo-Induced Thiol Coupling and C–H Activation Using Nanocrystalline Lead-Halide Perovskite Catalysts. Catal. Sci. Technol. 2018, 8, 4257–4263.
- 19 Oka, M.; Katsube, D.; Tsuji, T.; Iida, H. Phototropin-Inspired Chemoselective Synthesis of Unsymmetrical dDisulfides: Aerobic Oxidative Heterocoupling of Thiols Using Flavin Photocatalysis. Org. Lett. 2020, 22, 9244–9248.
- 20 An, S.; Guo, Z.; Liu, X.; Che, Y.; Xing, H.; Chen, P. Visible-Light- Responsive Lanthanide Coordination Polymers for Highly Efficient Photocatalytic Aerobic Oxidation of Amines and Thiols. New J. Chem. 2021, 45, 15767–15775.
- 21 Spiliopoulou, N.; Kokotos, C. G. Photochemical Metal-Free Aerobic Oxidation of Thiols to Disulfides. Green Chem. 2021, 23, 546–551.
- 22 Dong, X.; Hao, H.; Zhang, F.; Lang, X. Combining Bronsted Base and Photocatalysis into Conjugated Microporous Polymers: Visible Light- Induced Oxidation of Thiols into Disulfides with Oxygen. J. Colloid Interface Sci. 2022, 622, 1045–1053.
- 23 Wang, J.; Liu, Y.; Li, Y.; Xia, L.; Jiang, M.; Wu, P. Highly Efficient Visible-Light-Driven H2 Production via an Aosin Y-Based Metal–Organic Framework. Inorg. Chem. 2018, 57, 7495–7498.
- 24 Li, S.; Shen, Y.; Yang, W.; Wang, Y.-J.; Qi, Z.; Zhang, J.; Zhang, X.-M. A Photo-Responsive Charge-Assisted Hydrogen-Bonded Organic Network with Ultra-Stable Viologen Radicals. Chin. J. Chem. 2022, 40, 351–356.
- 25 Wang, Z.; Lang, X. Visible Light Photocatalysis of Dye-Sensitized TiO2: The Selective Aerobic Oxidation of Amines to Imines. Appl. Catal. B Environ. 2018, 224, 404–409.
- 26 Liu, H.; Li, Q.-Q.; Zhou, L.; Deng, B.; Pan, P.-H.; Zhao, S.-Y.; Liu, P.; Wang, Y.-Y.; Li, J.-L. Confinement of Organic Dyes in UiO-66-type Metal-Organic Frameworks for the Enhanced Synthesis of [1,2,5]Thiadiazole[3,4-g]benzoimidazoles. J. Am. Chem. Soc. 2023, 145, 17588–17596.
- 27 Chen, Y.; Mo, Z.; Zhu, X.; Xu, Q.; Xue, Z.; Li, H.; Xu, H.; Zhao, L. Facilitated Interfacial Charge Separation Using Triphenylamine-Zinc Porphyrin Dyad-Sensitized TiO2 Nanoparticles for Photocatalysis. J. Alloys Compd. 2021, 889, 161795–161805.
- 28 Zhao, L.; Xu, Q.; Shao, Z.; Chen, Y.; Xue, Z.; Li, H.; Zhang, J. Enhanced Oxygen Reduction Reaction Performance Using Intermolecular Forces Coupled with More Exposed Molecular Orbitals of Trsiphenylamine in Co-Porphyrin Electrocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 45976–45986.
- 29 Zhang, Z.; Li, D.; Wang, S.; Geng, Y.; Liu, H. Constructing Hole Transport Channels in the Photoactive Layer Connecting Dopant-Free Hole Transport Layers to Improve the Power Conversion Efficiency of Perovskite Solar Cells. Chem. Eng. J. 2023, 464, 142615–142623.
- 30 Mao, L.; Zhou, M.; Shi, X.; Yang, H.-B. Triphenylamine (TPA) Radical Cations and Related Macrocycles. Chin. Chem. Lett. 2021, 32, 3331–3341.
- 31 Li, Y.-H.; Chen, Y.-C. Triphenylamine-Hexaarylbiimidazole Derivatives as Hydrogen-Acceptor Photoinitiators for Free Radical Photopolymerization under UV and LED Light. Polym. Chem. 2020, 11, 1504–1513.
- 32 Tan, Y.-X.; He, Y.-P.; Yuan, D.; Zhang, J. Use of Aligned Triphenylamine-Based Radicals in a Porous Framework for Promoting Photocatalysis. Appl. Catal. B Environ. 2018, 221, 664–669.
- 33 Wang, Y. X.; Wang, H. M.; Meng, P.; Song, D. X.; Hou, J. J.; Zhang, X. M. An uncoordinated Tertiary Nitrogen Based Tricarboxylate Calcium Network with Lewis Acid-Base Dual Catalytic Sites for Cyanosilylation of Aldehydes. Dalton Trans. 2021, 50, 1740–1745.
- 34 Dong, L. Z.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W. X.; Lan, Y. Q. Stable Heterometallic Cluster-Based Organic Framework Catalysts for Artificial Photosynthesis. Angew. Chem. Int. Ed. 2020, 59, 2659–2663.
- 35 Wang, K.; Li, Y.; Xie, L.-H.; Li, X.; Li, J.-R. Construction and Application of Base-Stable MOFs: A Critical Review. Chem. Soc. Rev. 2022, 51, 6417–6441.
- 36 Wang, Y. X.; Wang, H. M.; Meng, P.; Song, D. X.; Qi, Z.; Zhang, X. M. Fe2Mn(μ3-O)(COO)6 Cluster Based Stable MOF for Oxidative Coupling of Amines via Heterometallic Synergy. Chin. J. Chem. 2021, 39, 2983–2989.
- 37 Daliran, S.; Oveisi, A. R.; Peng, Y.; López-Magano, A.; Khajeh, M.; Mas-Ballesté, R.; Alemán, J.; Luque, R.; Garcia, H. Metal–Organic Framework (MOF)-, Covalent-Organic Framework (COF)-, and Porous-Organic Polymers (POP)-Catalyzed Selective C–H Bond Activation and Functionalization Reactions. Chem. Soc. Rev. 2022, 51, 7810–7882.
- 38 Li, G.-P.; Xie, H.-X.; Yang, S.-R.; Fu, Y.-L.; Zhang, Y.-Q.; Yang, Y.-Y. Dramatic Impact of Auxiliary Ligands on the Dynamic Magnetic Relaxation in Tetranuclear DyIII2ZnII2 Single Molecule Magnets. Chin. J. Chem. 2022, 40, 2415–2420.
- 39 Sun, Z.-X.; Sun, K.; Gao, M.-L.; Metin, Ö; Jiang, H.-L. Optimizing Pt Electronic States through Formation of Schottky Junction on Non- reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202206108.
- 40 Xu, C.; Pan, Y.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S.-H.; Jiang, H.-L. Turning on Visible-Light Photocatalytic C−H Oxidation over Metal−Organic Frameworks by Introducing Metal-to-Cluster Charge Transfer. J. Am. Chem. Soc. 2019, 141, 19110–19117.
- 41 Pan, Y.; Qian, Y.; Zheng X.; Chu, S.-Q.; Yang, Y.; Ding, C.; Wang, X.; Yu, S.-H.; Jiang, H.-L. Precise Fabrication of Single-Atom Alloy Co-Catalyst with Optimal Charge State for Enhanced Photocatalysis. Natl. Sci. Rev. 2021, 8, nwaa224.
- 42 Zeng, L.; Huang, L.; Han, G. Dye Doped Metal-Organic Frameworks for Enhanced Phototherapy. Adv. Drug Deliver Rev. 2022, 189, 114479–114493.
- 43 Guo, Z.; Liu, X.; Bai, R.; Che, Y.; Chi, Y.; Guo, C.; Xing, H. Photoactive Metal–Organic Frameworks for the Selective Synthesis of Thioethers: Coupled with Phosphine to Modulate Thiyl Radical Generation. Inorg. Chem. 2021, 60, 8672–8681.
- 44 Fan, W. K.; Tahir, M. Recent Advances on Cobalt Metal Organic Frameworks (MOFs) for Potocatalytic CO2 Rduction to Rewable Energy and Fels: A review on current progress and future directions. Energy Convers. Manage. 2022, 253, 115180–115206.
- 45 Li, S.; Wu, F.; Lin, R.; Wang, J.; Li, C.; Li, Z.; Jiang, J.; Xiong, Y. Enabling Photocatalytic Hydrogen Production Over Fe-Based MOFs by Refining Band Structure with Dye Sensitization. Chem. Eng. J. 2022, 429, 132217–132223.
- 46 Yan, Z.-H.; Du, M.-H.; Liu, J.; Jin, S.; Wang, C.; Zhuang, G.-L.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. Photo-Generated Dinuclear {Eu(II)}2 Active Sites for Selective CO2 Reduction in a Photosensitizing Metal-Organic Framework. Nat. Commun. 2018, 9, 3353–3361.
- 47 Li, Y.-L.; Li, A.-J.; Huang, S.-L.; Vittal, J. J.; Yang, G.-Y. Polypyridyl Ru(II) or Cyclometalated Ir(III) Functionalized Architectures for Photocatalysis. Chem. Soc. Rev. 2023, 52, 4725–4754.
- 48
Tang, Y.; Ji, G.; Li, H.; Gao, H.; He, C.; Zhao, L.; Duan, C. Ligand-Regulated Photoinduced Electron Transfer within Metal–Organic Frameworks for Efficient Photocatalysis. Inorg. Chem. Front. 2023, DOI: https://doi.org/10.1039/d3qi01120h.
10.1039/d3qi01120h Google Scholar
- 49 Gao, Z.; Lai, Y.; Tao, Y.; Xiao, L.; Li, Z.; Zhang, L.; Sun, L.; Luo, F. Creating and Tailoring Ultrathin Two-Dimensional Uranyl-Organic Framework Nanosheets for Boosting Photocatalytic Oxidation Reactions. Appl. Catal. B Environ. 2021, 297, 120485–120493.
- 50 Xie, L.; Lin, J.; Liu, X.; Xue, W.; Zhang, W.; Liu, S.; Zhang, J.; Chen, X. Organic Ammonium Ion-Occluded Flexible Coordination Polymers: Thermal Activation, Structure Transformation and Proton Transfer. Sci. China Chem. 2010, 53, 2144–2151.
- 51 Liu, Y.; Liu, J.; Xiong, H.; Chen, J.; Chen, S.; Zeng, Z.; Deng, S.; Wang, J. Negative Electrostastic Potentials in a Hofmann-Type Metal-Organic Framework for Efficient Acetylene Separation. Nat. Commun. 2022, 13, 5515–5523.
- 52 Liu, L.; Meng, H.; Chai, Y.; Chen, X.; Xu, J.; Liu, X.; Liu, W.; Guldi, D. M.; Zhu, Y. Angew. Chem. Int. Ed. 2023, 62, e202217897.
- 53 Wang, M.; Tan, G.; Zhang, D.; Li, B.; Lv, L.; Wang, Y.; Ren, H.; Zhang, X.; Xia, A.; Liu, Y. Enhanced Photoelectrochemical Performance of Zn2SnO4N by Interstitial N Induced the Build-in Polarization Electric Field. J. Alloys Compd. 2019, 787, 53–62.
- 54 Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Krist-Cryst. Mater. 2005, 220, 567–570.
- 55 Xu, H.; Shi, J.-L.; Lyu, S.-S.; Lang, X. Visible-Light Photocatalytic Selective Aerobic Oxidation of Thiols to Disulfides on Anatase TiO2. Chin. J. Catal. 2020, 41, 1468–1473.
- 56 Zhou, J.; Mao, L.; Wu, M.-X.; Peng, Z.; Yang, Y.; Zhou, M.; Zhao, X.-L.; Shi, X.; Yang, H.-B. Extended Phenothiazines: Synthesis, Photophysical and Redox Properties, and Efficient Photocatalytic Oxidative Coupling of Amines. Chem. Sci. 2022, 13, 5252–5260.
- 57 Tomita, O.; Otsubo, T.; Higashi, M.; Ohtani, B.; Abe, R. Partial Oxidation of Alcohols on Visible-Light-Responsive WO3 Photocatalysts Loaded with Palladium Oxide Cocatalyst. ACS Catal. 2016, 6, 1134–1144.
- 58 Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2007, 64, 112–122.