Understanding the Interfacial Energy Structure and Electron Extraction Process in Inverted Organic Solar Cells with Phosphine-Doped Cathode Interlayers
Yi Yang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJingwen Wang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYang Xiao
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Bowei Xu
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jianhui Hou
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYi Yang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJingwen Wang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYang Xiao
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Bowei Xu
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jianhui Hou
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Cathode interlayers (CILs) play an essential role in achieving efficient organic solar cells (OSCs). However, the electronic structure at the electrode/CIL/active layer interfaces and the underlying mechanisms for electron collection remain unclear, which becomes a major obstacle to develop high-performance CILs. Herein, we investigate the relationship of the electron collection abilities of four cross-linked and n-doped CILs (c-NDI:P0, c-NDI:P1, c-NDI:P2, c-NDI:P3) with their electronic structure of space charge region at heterojunction interface. By accurately calculating the depletion region width according to the barrier height, doping density and permittivity, we put forward that the optimal thickness of CIL should be consistent with the depletion region width to realize the minimum energy loss. As a result, the depletion region width is largely reduced from 13 nm to 0.8 nm at the indium tin oxide (ITO)/c-NDI:P0 interface, resulting in a decent PCE of 17.7% for the corresponding inverted OSCs.
Supporting Information
Filename | Description |
---|---|
cjoc202300635-sup-0001-supinfo.pdfPDF document, 721.4 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Galagan, Y.; Di Giacomo, F.; Gorter, H.; Kirchner, G.; de Vries, I.; Andriessen, R.; Groen, P. Roll-to-Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells. Adv. Energy Mater. 2018, 8, 1801935.
- 2 Lee, C.; Lee, H. R.; Choi, J.; Kim, Y.; Nguyen, T. L.; Lee, W.; Gautam, B.; Liu, X.; Zhang, K.; Huang, F.; Oh, J. H.; Woo, H. Y.; Kim, B. J. Efficient and Air-Stable Aqueous-Processed Organic Solar Cells and Transistors: Impact of Water Addition on Processability and Thin-Film Morphologies of Electroactive Materials. Adv. Energy Mater. 2018, 8, 1802674.
- 3 Meng, X.; Zhang, L.; Xie, Y.; Hu, X.; Xing, Z.; Huang, Z.; Liu, C.; Tan, L.; Zhou, W.; Sun, Y.; Ma, W.; Chen, Y. A General Approach for Lab-to-Manufacturing Translation on Flexible Organic Solar Cells. Adv. Mater. 2019, 31, e1903649.
- 4 Sun, L.; Zeng, W.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Wang, W.; Liu, T.; Jiang, X.; Jiang, Y.; Zhou, Y. Flexible All-Solution-Processed Organic Solar Cells with High-Performance Nonfullerene Active Layers. Adv. Mater. 2020, 32, e1907840.
- 5 Zhou, M.; Liao, C.; Duan, Y.; Xu, X.; Yu, L.; Li, R.; Peng, Q. 19.10% Efficiency and 80.5% Fill Factor Layer-by-Layer Organic Solar Cells Realized by 4-Bis(2-Thienyl)Pyrrole-2,5-Dione Based Polymer Additives for Inducing Vertical Segregation Morphology. Adv. Mater. 2023, 35, 2208279.
- 6 Jiang, K.; Zhang, J.; Zhong, C.; Lin, F. R.; Qi, F.; Li, Q.; Peng, Z. X.; Kaminsky, W.; Jang, S. H.; Yu, J. W.; Deng, X.; Hu, H. W.; Shen, D.; Gao, F.; Ade, H.; Xiao, M.; Zhang, C. F.; Jen, A. K. Y. Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture. Nat. Energy 2022, 7, 1076–1086.
- 7
Li, S.; Fu, Q.; Meng, L.; Wan, X.; Ding, L.; Lu, G.; Lu, G.; Yao, Z.; Li, C.; Chen, Y. Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnO-Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5 Years. Angew. Chem. Int. Ed. 2022, 134, e202207397.
10.1002/ange.202207397 Google Scholar
- 8 Liu, M.; Ge, X.; Jiang, X.; Guo, F.; Gao, S.; Peng, Q.; Zhao, L.; Zhang, Y. High-Performance Ternary Organic Solar Cells Enabled by Integrating a 3D-Shaped Guest Acceptor Derived from Perylene Diimide. Adv. Funct. Mater. 2023, 33, 2300214.
- 9 Yang, Y.; Xiao, Y.; Xu, B.; Hou, J. Cross-Linkable Cathode Interlayer for Inverted Organic Solar Cells with Enhanced Efficiency and Stability. Adv. Energy Mater. 2023, 13, 2301098.
- 10 Wu, T.; Xu, P.; Wang, D.; Jiang, X.; Guo, F.; Gao, S.; Ge, Z.; Zhang, Y. One-step synthesis of low-cost perylenediimide-based cathode interfacial materials for efficient inverted perovskite solar cells. Chem. Eng. J. 2023, 454, 140451.
- 11 Wu, Z.; Sun, C.; Dong, S.; Jiang, X.-F.; Wu, S.; Wu, H.; Yip, H.-L.; Huang, F.; Cao, Y. n-Type Water/Alcohol-Soluble Naphthalene Diimide-Based Conjugated Polymers for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 2016, 138, 2004–2013.
- 12 Hu, Z.; Chen, Z.; Zhang, K.; Zheng, N.; Xie, R.; Liu, X.; Yang, X.; Huang, F.; Cao, Y. Self-Doped N-Type Water/Alcohol Soluble-Conjugated Polymers with Tailored Backbones and Polar Groups for Highly Efficient Polymer Solar Cells. Solar RRL 2017, 1, 1700055.
- 13 Tan, J. K.; Png, R. Q.; Zhao, C.; Ho, P. K. H. Ohmic transition at contacts key to maximizing fill factor and performance of organic solar cells. Nat. Commun. 2018, 9, 3269.
- 14 Yang, Y.; Wang, J.; Zu, Y.; Liao, Q.; Zhang, S.; Zheng, Z.; Xu, B.; Hou, J. Robust and hydrophobic interlayer material for efficient and highly stable organic solar cells. Joule 2023, 7, 545–557.
- 15 Zhang, Z.-G.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy Environ. Sci. 2014, 7, 1966–1973.
- 16 Zhang, H.; Shallcross, R. C.; Li, N.; Stubhan, T.; Hou, Y.; Chen, W.; Ameri, T.; Turbiez, M.; Armstrong, N. R.; Brabec, C. J. Overcoming Electrode-Induced Losses in Organic Solar Cells by Tailoring a Quasi-Ohmic Contact to Fullerenes via Solution-Processed Alkali Hydroxide Layers. Adv. Energy Mater. 2016, 6, 1502195.
- 17 Sharma, G. D.; Saxena, D.; Roy, M. S. Dark, photoelectrical properties and impedance analysis of organic semiconductor based donor/acceptor device. Thin Solid Films 2004, 467, 220–226.
- 18 Zhang, C.; He, Z.; Luo, X; Meng, R.; Chen, M.; Lu, H.; Yang, Y. Effects of CsSnxPb1−xI3 Quantum Dots as Interfacial Layer on Photovoltaic Performance of Carbon-Based Perovskite Solar Cells. Nanoscale Res. Lett. 2021, 16, 74.
- 19 Jiang, Z.; Soltanian, S.; Gholamkhass, B.; Aljaafari, A.; Servati, P. Light-soaking free organic photovoltaic devices with sol–gel deposited ZnO and AZO electron transport layers. RSC Adv. 2018, 8, 36542–36548.
- 20 Aharon, S.; Gamliel, S.; El Cohen, B.; Etgar, L. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 2014, 16, 10512–10518.
- 21 Biondi, M.; Choi, M. J.; Ouellette, O.; Baek, S. W.; Todorovic, P.; Sun, B.; Lee, S.; Wei, M.; Li, P.; Kirmani, A. R.; Sagar, L. K.; Richter, L. J.; Hoogland, S.; Lu, Z. H.; Garcia de Arquer, F. P.; Sargent, E. H. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. Adv. Mater. 2020, 32, e1906199.
- 22 Dai, A.; Zhou, Y. H.; Shu, A. L.; Mohapatra, S. K.; Wang, H.; Fuentes-Hernandez, C.; Zhang, Y. D.; Barlow, S.; Loo, Y. L.; Marder, S. R.; Kippelen, B.; Kahn, A. Enhanced Charge-Carrier Injection and Collection via Lamination of Doped Polymer Layers p-Doped with a Solution-Processible Molybdenum Complex. Adv. Funct. Mater. 2014, 24, 2197–2204.
- 23 Zhu, Q.; Paci, B.; Generosi, A.; Renaudineau, S.; Gouzerh, P.; Liang, X.; Mathieu, C.; Rountree, C.; Izzet, G.; Proust, A.; Barrett, N.; Tortech, L. Conductivity via Thermally Induced Gap States in a Polyoxometalate Thin Layer. J. Phys. Chem. C 2019, 123, 1922–1930.
- 24 Nian, L.; Gao, K.; Liu, F.; Kan, Y. Y.; Jiang, X. F.; Liu, L. L.; Xie, Z. Q.; Peng, X. B.; Russell, T. P.; Ma, Y. G. 11% Efficient Ternary Organic Solar Cells with High Composition Tolerance via Integrated Near-IR Sensitization and Interface Engineering. Adv. Mater. 2016, 28, 8184–8190.
- 25 Li, C.-Z.; Huang, J.; Ju, H.; Zang, Y.; Zhang, J.; Zhu, J.; Chen, H.; Jen, A. K.-Y. Modulate Organic-Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells. Adv. Mater. 2016, 28, 7269–7275.
- 26 Jiang, Y.; Sun, L.; Jiang, F.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Liu, T.; Hu, L.; Jiang, X.; Zhou, Y. Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO2 for nonfullerene organic solar cells. Mater. Horiz. 2019, 6, 1438–1443.
- 27 Cho, A. N.; Park, N. G. Impact of Interfacial Layers in Perovskite Solar Cells. ChemSusChem 2017, 10, 3687–3704.
- 28 Yang, B.; Zhang, S.; Li, S.; Yao, H.; Li, W.; Hou, J. A Self-Organized Poly(vinylpyrrolidone)-Based Cathode Interlayer in Inverted Fullerene-Free Organic Solar Cells. Adv. Mater. 2019, 31, e1804657.
- 29 Kang, Q.; Wang, Q.; An, C.; He, C.; Xu, B.; Hou, J. Significant influence of doping effect on photovoltaic performance of efficient fullerene-free polymer solar cells. J. Energy Chem. 2020, 43, 40–46.
- 30 Yao, J.; Qiu, B.; Zhang, Z.-G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; Xiao, M.; Meng, L.; Li, Y. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 2020, 11, 2726.
- 31 Zhou, Y. H.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; Fenoll, M.; Dindar, A.; Haske, W.; Najafabadi, E.; Khan, T. M.; Sojoudi, H.; Barlow, S.; Graham, S.; Bredas, J. L.; Marder, S. R.; Kahn, A.; Kippelen, B. A Universal Method to Produce Low-Work Function Electrodes for Organic Electronics. Science 2012, 336, 327–332.
- 32 Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
- 33 Kiefer, D.; Kroon, R.; Hofmann, A. I.; Sun, H.; Liu, X.; Giovannitti, A.; Stegerer, D.; Cano, A.; Hynynen, J.; Yu, L.; Zhang, Y.; Nai, D.; Harrelson, T. F.; Sommer, M.; Moule, A. J.; Kemerink, M.; Marder, S. R.; McCulloch, I.; Fahlman, M.; Fabiano, S.; Muller, C., Double doping of conjugated polymers with monomer molecular dopants. Nat. Mater. 2019, 18, 149–155.
- 34 Yan, T.; Song, W.; Huang, J.; Peng, R.; Huang, L.; Ge, Z. 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy. Adv. Mater. 2019, 31, e1902210.
- 35 Tountas, M.; Topal, Y.; Polydorou, E.; Soultati, A.; Verykios, A.; Kaltzoglou, A.; Papadopoulos, T. A.; Auras, F.; Seintis, K.; Fakis, M.; Palilis, L. C.; Tsikritzis, D.; Kennou, S.; Koutsoureli, M.; Papaioannou, G.; Ersoz, M.; Kus, M.; Falaras, P.; Davazoglou, D.; Argitis, P.; Vasilopoulou, M. Low Work Function Lacunary Polyoxometalates as Electron Transport Interlayers for Inverted Polymer Solar Cells of Improved Efficiency and Stability. ACS Appl. Mater. Interfaces 2017, 9, 22773–22787.
- 36 Jiang, K.; Wang, J.; Wu, F.; Xue, Q.; Yao, Q.; Zhang, J.; Chen, Y.; Zhang, G.; Zhu, Z.; Yan, H.; Zhu, L.; Yip, H. L. Dopant-Free Organic Hole- Transporting Material for Efficient and Stable Inverted All-Inorganic and Hybrid Perovskite Solar Cells. Adv. Mater. 2020, 32, e1908011.
- 37 Zhou, H.; Zhang, Y.; Seifter, J.; Collins, S. D.; Luo, C.; Bazan, G. C.; Nguyen, T. Q.; Heeger, A. J. High-efficiency polymer solar cells enhanced by solvent treatment. Adv. Mater. 2013, 25, 1646–1652.
- 38 Du, X.; Heumueller, T.; Gruber, W.; Classen, A.; Unruh, T.; Li, N.; Brabec, C. J. Efficient Polymer Solar Cells Based on Non-fullerene Acceptors with Potential Device Lifetime Approaching 10 Years. Joule 2019, 3, 215–226.
- 39 Lin, Y.; Adilbekova, B.; Firdaus, Y.; Yengel, E.; Faber, H.; Sajjad, M.; Zheng, X.; Yarali, E.; Seitkhan, A.; Bakr, O. M.; El-Labban, A.; Schwingenschlogl, U.; Tung, V.; McCulloch, I.; Laquai, F.; Anthopoulos, T. D. 17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS. Adv. Mater. 2019, 31, e1902965.