Effect of Hyperconjugation on Photovoltaic Performance in Pseduo-2D Perylene Diimide Derivatives†
Zhilong He
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Search for more papers by this authorYuwen Hong
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Search for more papers by this authorGuangyu Li
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorTong Shan
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Search for more papers by this authorYi Zhang
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Search for more papers by this authorCorresponding Author
Hongliang Zhong
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen, Guangdong, 518057 China
E-mail: [email protected]Search for more papers by this authorZhilong He
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Search for more papers by this authorYuwen Hong
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Search for more papers by this authorGuangyu Li
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorTong Shan
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Search for more papers by this authorYi Zhang
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Search for more papers by this authorCorresponding Author
Hongliang Zhong
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200230 China
Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen, Guangdong, 518057 China
E-mail: [email protected]Search for more papers by this authorDedicated to the Special Issue of Emerging Investigators in 2023.
Comprehensive Summary
The π-π interaction is acknowledged as the predominant factor to determine the molecular packing in organic photovoltaic materials, while other non-covalent intermolecular interactions especially the σ-π hyperconjugation are often ignored. Herein, a perylene diimide (PDI) derivative named FIDT-PDI is designed and synthesized to shed light into the effect of hyperconjugation on the molecular packing and further the photovoltaic performance. Dynamic NMR and 2D NOE NMR demonstrate the formation of intermolecular σ-π hyperconjugation between the C—H bond of the PDI moiety in one molecule and the phenyl sidechain in another molecule of FIDT-PDI. Benefiting from the σ-π hyperconjugation, FIDT-PDI with twisted backbone reversely exhibits more ordered packing and stronger crystallinity compared with another PDI derivative FIDTT-PDI which has better planarity, consequently achieving superior PCE and higher carrier mobility. This contribution is the first paradigm to unravel the structure-property relationship between σ-π hyperconjugation of conjugated materials and corresponding photovoltaic performance.
Supporting Information
Filename | Description |
---|---|
cjoc202300616-sup-0001-supinfo.pdfPDF document, 1.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Zhang, G.; Lin, F. R.; Qi, F.; Heumuller, T.; Distler, A.; Egelhaaf, H. J.; Li, N.; Chow, P. C. Y.; Brabec, C. J.; Jen, A. K.; Yip, H. L. Renewed Prospects for Organic Photovoltaics. Chem. Rev. 2022, 122, 14180–14274.
- 2 Tang, H.; Bai, Y.; Zhao, H.; Qin, X.; Hu, Z.; Zhou, C.; Huang, F.; Cao, Y. Interface Engineering for Highly Efficient Organic Solar Cells. Adv. Mater. 2023, 2212236.
- 3 Mishra, A.; Sharma, G. D. Harnessing the Structure-Performance Relationships in Designing Non-Fused Ring Acceptors for Organic Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202219245.
- 4 Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Recent progress in organic solar cells (Part II device engineering). Sci. China Chem. 2022, 65, 1457–1497.
- 5 Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; Zhang, J.; Wei, Z.; Zhang, X.; Huang, H. Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Adv. Mater. 2022, 34, e2204718.
- 6 Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Recent progress in organic solar cells (Part I material science). Sci. China Chem. 2021, 65, 224–268.
- 7 Yang, H.; Cui, C.; Li, Y. Effects of Heteroatom Substitution on the Photovoltaic Performance of Donor Materials in Organic Solar Cells. Acc. Mater. Res. 2021, 2, 986–997.
- 8 Zhang, X.; Li, C.; Xu, J.; Wang, R.; Song, J.; Zhang, H.; Li, Y.; Jing, Y.-N.; Li, S.; Wu, G.; Zhou, J.; Li, X.; Zhang, Y.; Li, X.; Zhang, J.; Zhang, C.; Zhou, H.; Sun, Y.; Zhang, Y. High Fill Factor Organic Solar Cells with Increased Dielectric Constant and Molecular Packing Density. Joule 2022, 6, 444–457.
- 9 Wang, H.; Cao, C.; Chen, H.; Lai, H.; Ke, C.; Zhu, Y.; Li, H.; He, F. Oligomeric Acceptor: A "Two-in-One" Strategy to Bridge Small Molecules and Polymers for Stable Solar Devices. Angew. Chem. Int. Ed. 2022, 61, e202201844.
- 10 Li, G.; Feng, L.-W.; Mukherjee, S.; Jones, L. O.; Jacobberger, R. M.; Huang, W.; Young, R. M.; Pankow, R. M.; Zhu, W.; Lu, N.; Kohlstedt, K. L.; Sangwan, V. K.; Wasielewski, M. R.; Hersam, M. C.; Schatz, G. C.; DeLongchamp, D. M.; Facchetti, A.; Marks, T. J. Non-fullerene Acceptors with Direct and Indirect Hexa-fluorination Afford >17% Efficiency in Polymer Solar Cells. Energy Environ. Sci. 2022, 15, 645–659.
- 11 Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. PBDB-T and its derivatives: A Family of Polymer Donors Enables over 17% Efficiency in Organic Photovoltaics. Mater. Today 2020, 35, 115–130.
- 12 Liu, Y. H.; Zhao, J. B.; Li, Z. K.; Mu, C.; Ma, W.; Hu, H. W.; Jiang, K.; Lin, H. R.; Ade, H.; Yan, H. Aggregation and Morphology Control Enables Multiple Cases of High-efficiency Polymer Solar Cells. Nat. Commun. 2014, 5, 5293.
- 13 Liu, B.; Wang, Y.; Sun, H.; Gámez-Valenzuela, S.; Yan, Z.; Feng, K.; Uddin, M. A.; Koh, C.; Zhou, X.; López Navarrete, J. T.; Ruiz Delgado, M. C.; Meng, H.; Niu, L.; Woo, H. Y.; Ponce Ortiz, R.; Guo, X. Backbone Configuration and Electronic Property Tuning of Imide-Functionalized Ladder-Type Heteroarenes-Based Polymer Acceptors for Efficient All-Polymer Solar Cells. Adv. Funct. Mater. 2022, 32, 2200065.
- 14 Yu, H.; Wang, Y.; Kim, H. K.; Wu, X.; Li, Y.; Yao, Z.; Pan, M.; Zou, X.; Zhang, J.; Chen, S.; Zhao, D.; Huang, F.; Lu, X.; Zhu, Z.; Yan, H. A Vinylene-Linker-Based Polymer Acceptor Featuring a Coplanar and Rigid Molecular Conformation Enables High-Performance All-Polymer Solar Cells with Over 17% Efficiency. Adv. Mater. 2022, 34, e2200361.
- 15 Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C. C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-junction Organic Solar Cells with Over 19% Efficiency Enabled by a Refined Double-Fibril Network Morphology. Nat. Mater. 2022, 21, 656.
- 16 Zeng, R.; Zhu, L.; Zhang, M.; Zhong, W.; Zhou, G.; Zhuang, J.; Hao, T.; Zhou, Z.; Zhou, L.; Hartmann, N.; Xue, X.; Jing, H.; Han, F.; Bai, Y.; Wu, H.; Tang, Z.; Zou, Y.; Zhu, H.; Chen, C. C.; Zhang, Y.; Liu, F. All-polymer Organic Solar Cells with Nano-to-micron Hierarchical Morphology and Large Light Receiving Angle. Nat. Commun. 2023, 14, 4148.
- 17 Lin, Y. Z.; Zhao, F. W.; He, Q.; Huo, L. J.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y. M.; Wang, C. R.; Zhu, D. B.; Heeger, A. J.; Marder, S. R.; Zhan, X. W. High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. J. Am. Chem. Soc. 2016, 138, 4955–4961.
- 18 Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174.
- 19 Lin, Y. Z.; He, Q.; Zhao, F. W.; Huo, L. J.; Mai, J. Q.; Lu, X. H.; Su, C. J.; Li, T. F.; Wang, J. Y.; Zhu, J. S.; Sun, Y. M.; Wang, C. R.; Zhan, X. W. A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. J. Am. Chem. Soc. 2016, 138, 2973–2976.
- 20 Ding, K.; Shan, T.; Xu, J. Q.; Li, M. Y.; Wang, Y.; Zhang, Y.; Xie, Z. Y.; Ma, Z. F.; Liu, F.; Zhong, H. L. A Perylene Diimide-containing Acceptor Enables High Fill Factor in Organic Solar Cells. Chem. Commun. 2020, 56, 11433–11436.
- 21 Cheng, P.; Li, G.; Zhan, X. W.; Yang, Y. Next-generation Organic Photovoltaics Based on Non-Fullerene Acceptors. Nat. Photon. 2018, 12, 131–142.
- 22 Zhao, F. W.; Dai, S. X.; Wu, Y. Q.; Zhang, Q. Q.; Wang, J. Y.; Jiang, L.; Ling, Q. D.; Wei, Z. X.; Ma, W.; You, W.; Wang, C. R.; Zhan, X. W. Single-Junction Binary-Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Adv. Mater. 2017, 29, 1700144.
- 23 Wang, J. Y.; Xue, P. Y.; Jiang, Y. T.; Huo, Y.; Zhan, X. W. The Principles, Design and Applications of Fused-ring Electron Acceptors. Nat. Rev. Chem. 2022, 6, 614–634.
- 24 Ziffer, M. E.; Jo, S. B.; Zhong, H. L.; Ye, L.; Liu, H. B.; Lin, F.; Zhang, J.; Li, X. S.; Ade, H. W.; Jen, A. K. Y.; Ginger, D. S. Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. J. Am. Chem. Soc. 2018, 140, 9996–10008.
- 25 Li, S. X.; Liu, W. Q.; Li, C. Z.; Lau, T. K.; Lu, X. H.; Shi, M. M.; Chen, H. Z. A Non-fullerene Acceptor with a Fully Fused Backbone for Efficient Polymer Solar Cells with a High Open-circuit Voltage. J. Mater. Chem. A 2016, 4, 14983–14987.
- 26 Zhang, Q. Q.; Kelly, M. A.; Bauer, N.; You, W. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells. Acc. Chem. Res. 2017, 50, 2401–2409.
- 27 Cui, C. H.; Wong, W. Y.; Li, Y. F. Improvement of Open-circuit Voltage and Photovoltaic Properties of 2D-conjugated Polymers by Alkylthio Substitution. Energy Environ. Sci. 2014, 7, 2276–2284.
- 28 Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. Adv. Mater. 2018, 30, e1800868.
- 29 Cui, C. H.; He, Z. C.; Wu, Y.; Cheng, X.; Wu, H. B.; Li, Y. F.; Cao, Y.; Wong, W. Y. High-performance Polymer Solar Cells Based on a 2D-conjugated Polymer with an Alkylthio Side-chain. Energy Environ. Sci. 2016, 9, 885–891.
- 30 Wang, Y.; Zhong, H. B.; Hong, Y. W.; Shan, T.; Ding, K.; Zhu, L.; Liu, F.; Wei, H.; Yu, C. Y.; Zhong, H. L. Tailoring the Molecular Geometry of Polyfluoride Perylene Diimide Acceptors towards Efficient Organic Solar Cells. J. Mater. Chem. C 2020, 8, 8224–8233.
- 31 Zhang, Y.; Yu, C. Y.; Shan, T.; Chen, Y.; Wang, Y.; Xie, M. C.; Li, T.; Yang, Z. B.; Zhong, H. L. Solvent-assisted Conformational Interconversion of an Organic Semiconductor with Multiple Non-covalent Interactions. Cell. Rep. Phys. Sci. 2022, 3, 100765.
- 32 Wang, X. D.; Zeng, R.; Lu, H.; Ran, G. L.; Zhang, A. D.; Chen, Y. N.; Liu, Y. H.; Liu, F.; Zhang, W. K.; Tang, Z.; Bo, Z. S. A Simple Nonfused Ring Electron Acceptor with a Power Conversion Efficiency Over 16%. Chin. J. Chem. 2023, 41, 665–671.
- 33 Liu, M. H.; Han, X.; Chen, H.; Peng, Q.; Huang, H. A Molecular Descriptor of Intramolecular Noncovalent Interaction for Regulating Optoelectronic Properties of Organic Semiconductors. Nat. Commun. 2023, 14, 2500.
- 34 Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J. Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chem. Rev. 2017, 117, 10291–10318.
- 35 Niko, Y.; Kawauchi, S.; Otsu, S.; Tokumaru, K.; Konishi, G. Fluorescence Enhancement of Pyrene Chromophores Induced by Alkyl Groups through σ-π Conjugation: Systematic Synthesis of Primary, Secondary, and Tertiary Alkylated Pyrenes at the 1, 3, 6, and 8 Positions and Their Photophysical Properties. J. Org. Chem. 2013, 78, 3196–3207.
- 36 Zhao, W. C.; Qian, D. P.; Zhang, S. Q.; Li, S. S.; Inganas, O.; Gao, F.; Hou, J. H. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Adv. Mater. 2016, 28, 4734–4739.
- 37 Chen, H.; Jeong, S. Y.; Tian, J. F.; Zhang, Y. D.; Naphade, D. R.; Alsufyani, M.; Zhang, W. M.; Griggs, S.; Hu, H. L.; Barlow, S.; Woo, H. Y.; Marder, S. R.; Anthopoulos, T. D.; McCulloch, I.; Lin, Y. B. A 19% Efficient and Stable Organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy Environ. Sci. 2023, 16, 1062–1070.
- 38 Shan, T.; Ding, K.; Yu, L. Y.; Wang, X.; Zhang, Y.; Zheng, X. Y.; Chen, C. C.; Peng, Q.; Zhong, H. L. Spatially Orthogonal 2D Sidechains Optimize Morphology in All-Small-Molecule Organic Solar Cells. Adv. Funct. Mater. 2021, 31, 2100750.
- 39 Shan, T.; Zhang, Y.; Wang, Y.; Xie, Z.; Wei, Q.; Xu, J.; Zhang, M.; Wang, C.; Bao, Q.; Wang, X.; Chen, C. C.; Huang, J.; Chen, Q.; Liu, F.; Chen, L.; Zhong, H. Universal and Versatile Morphology Engineering via Hot Fluorous Solvent Soaking for Organic Bulk Heterojunction. Nat. Commun. 2020, 11, 5585.