Regulating the Electron-Deficient Component in A-DA1D-A Typed Small-Molecule Acceptors for High-Performance Organic Solar Cells†
Weifei Wei
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorRuijie Ma
Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorZhanxiang Chen
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorTongle Xu
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorGang Li
Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorCorresponding Author
Zhenghui Luo
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
E-mail: [email protected]Search for more papers by this authorWeifei Wei
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorRuijie Ma
Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorZhanxiang Chen
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorTongle Xu
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
Search for more papers by this authorGang Li
Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorCorresponding Author
Zhenghui Luo
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 China
E-mail: [email protected]Search for more papers by this authorDedicated to the Special Issue of Emerging Investigators in 2023.
Comprehensive Summary
Fine-tuning of the electron-deficient unit in A-DA1D-A typed small-molecule acceptors (SMAs) plays a crucial role in developing efficient SMAs for organic solar cells (OSCs). Here, we developed a SMA based on benzo[4,5]thieno[2,3-b]quinoxaline, designated as QW1, as well as three SMAs based on 1-methylindoline-2,3-dione, identified as QW2, QW3, and QW4. Compared with QW2, QW1 displays slightly blue-shifted absorption spectra and a lower LUMO energy level due to the stronger electron-withdrawing capability of BTQx in contrast to MDO. On the other hand, the introduction of a bromine atom in QW3 and QW4 causes a blue shift in absorption and a reduction in the LUMO energy level compared to QW2. Density functional theory analysis reveals that QW1 exhibits the best molecular planarity, which endows QW1 with larger electron mobility and tighter molecular stacking. Consequently, PM6:QW1 device affords a better efficiency of 15.63% than those of the devices based on QW2 (14.25%), QW3 (13.21%) and QW4 (15.03%). Moreover, the QW4-based device yields the highest open-circuit voltage of 0.933 V, and the PM6:L8-BO:QW4 ternary device realizes a PCE of 19.03%. Overall, our work demonstrates that regulation of electron-deficient central units is an effective strategy to improve the photovoltaic performance of the resulting A-DA1D-A SMAs.
Supporting Information
Filename | Description |
---|---|
cjoc202300605-sup-0001-supinfo.pdfPDF document, 2.2 MB |
Appendix S1: Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Wang, J.; Zhan, X. From Perylene Diimide Polymers to Fused-Ring Electron Acceptors: A 15-Year Exploration Journey of Nonfullerene Acceptors. Chin. J. Chem. 2022, 40, 1592–1607.
- 2 Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174.
- 3
Liu, T.; Zhou, K.; Ma, R.; Zhang, L.; Huang, C.; Luo, Z.; Zhu, H.; Yao, S.; Yang, C.; Zou, B.; Ye, L. Multifunctional All-Polymer Photovoltaic Blend with Simultaneously Improved Efficiency (18.04%), Stability and Mechanical Durability. Aggregate 2022, 4, e308.
10.1002/agt2.308 Google Scholar
- 4 Bai, Q.; Liang, Q.; Li, H.; Sun, H.; Guo, X.; Niu, L. Recent Progress in Low-Cost Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells. Aggregate 2022, 3, e281.
- 5 Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Recent Progress in Organic Solar Cells (Part I Material Science). Sci. China Chem. 2022, 65, 224–268.
- 6 Gu, X.-B.; Gao, J.-H.; Han, Z.-Y.; Shi, Y.-H.; Wei, Y.-N.; Zhang, Y.-C.; Peng, Q.; Wei, Z.-X.; Zhang, X.; Huang, H. A Simple Building Block with Noncovalently Conformational Locks towards Constructing Low-Cost and High-Performance Nonfused Ring Electron Acceptors. Chin. J. Polym. Sci. 2023, 41, 556–563.
- 7 Luo, Z.; Ma, R.; Yu, J.; Liu, H.; Liu, T.; Ni, F.; Hu, J.; Zou, Y.; Zeng, A.; Su, C.-J.; Jeng, U.-S.; Lu, X.; Gao, F.; Yang, C.; Yan, H. Heteroheptacene- based acceptors with thieno[3,2-b]pyrrole yield high-performance polymer solar cells. Natl. Sci. Rev. 2022, 9, nwac076.
- 8 Corzo, D.; Rosas-Villalva, D.; C, A.; Tostado-Blázquez, G.; Alexandre, E. B.; Hernandez, L. H.; Han, J.; Xu, H.; Babics, M.; De Wolf, S.; Baran, D. High-Performing Organic Electronics Using Terpene Green Solvents from Renewable Feedstocks. Nat. Energy 2022, 8, 62–73.
- 9
Luo, Z.; Yan, H.; Yang, C. End-Group Engineering of Nonfullerene Acceptors for High-Efficiency Organic Solar Cells. Acc. Mater. Res. 2023, https://doi.org/10.1021/accountsmr.3c00160.
10.1021/accountsmr.3c00160 Google Scholar
- 10 Liu, X.; Zhong, Z.; Zhu, R.; Yu, J.; Li, G. Aperiodic Band-Pass Electrode Enables Record-Performance Transparent Organic Photovoltaics. Joule 2022, 6, 1918–1930.
- 11 Zhang, Z. G.; Li, Y. Polymerized Small-Molecule Acceptors for High-Performance All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2021, 60, 4422–4433.
- 12 Sun, R.; Wang, T.; Fan, Q.; Wu, M.; Yang, X.; Wu, X.; Yu, Y.; Xia, X.; Cui, F.; Wan, J.; Lu, X.; Hao, X.; Jen, A. K. Y.; Spiecker, E.; Min, J. 18.2%-Efficient Ternary All-Polymer Organic Solar Cells with Improved Stability Enabled by a Chlorinated Guest Polymer Acceptor. Joule 2023, 7, 221–237.
- 13 Fan, Q.; Ma, R. ;Su, W.; Zhu, Q.; Luo, Z.; Chen, K.; Tang, Y.; Lin, F. R.; Li, Y.; Yan, H. A New Perspective to Develop Regiorandom Polymer Acceptors with High Active Layer Ductility, Excellent Device Stability, and High Efficiency Approaching 17%. Carbon Energy 2023, 5, e267.
- 14 Luo, Z.; Liu, T.; Ma, R.; Xiao, Y.; Zhan, L.; Zhang, G.; Sun, H.; Ni, F.; Chai, G.; Wang, J.; Zhong, C.; Zou, Y.; Guo, X.; Lu, X.; Chen, H.; Yan, H.; Yang, C. Precisely Controlling the Position of Bromine on the End Group Enables Well-Regular Polymer Acceptors for All-Polymer Solar Cells with Efficiencies over 15%. Adv. Mater. 2020, 32, 2005942.
- 15 Sun, H.; Yu, H.; Shi, Y.; Yu, J.; Peng, Z.; Zhang, X.; Liu, B.; Wang, J.; Singh, R.; Lee, J. A Narrow-Bandgap N-Type Polymer with an Acceptor-Acceptor Backbone Enabling Efficient All- Polymer Solar Cells. Adv. Mater. 2020, 32, 2004183.
- 16 Liu, W.; Sun, S.; Xu, S.; Zhang, H.; Zheng, Y.; Wei, Z.; Zhu, X. Theory-Guided Material Design Enabling High-Performance Multifunctional Semitransparent Organic Photovoltaics without Optical Modulations. Adv. Mater. 2022, 34, e2200337.
- 17 Jia, Z.; Qin, S.; Meng, L.; Ma, Q.; Angunawela, I.; Zhang, J.; Li, X.; He, Y.; Lai, W.; Li, N.; Ade, H.; Brabec, C. J.; Li, Y. High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nat. Commun. 2021, 12, 178.
- 18 Wang, X. D.; Zeng, R.; Lu, H.; Ran, G. L.; Zhang, A. D.; Chen, Y. N.; Liu, Y. H.; Liu, F.; Zhang, W. K.; Tang, Z.; Bo, Z. S. A Simple Nonfused Ring Electron Acceptor with a Power Conversion Efficiency Over 16%. Chin. J. Chem. 2023, 41, 665–671.
- 19 Lai, H.; Zhao, Q.; Chen, Z.; Chen, H.; Chao, P.; Zhu, Y.; Lang, Y.; Zhen, N.; Mo, D.; Zhang, Y.; He, F. Trifluoromethylation Enables a 3D Interpenetrated Low-Band-Gap Acceptor for Efficient Organic Solar Cells. Joule 2020, 4, 688–700.
- 20 Liang, Y.; Zhang, D.; Wu, Z.; Jia, T.; Lüer, L.; Tang, H.; Hong, L.; Zhang, J.; Zhang, K.; Brabec, C. J.; Li, N.; Huang, F. Organic Solar Cells Using Oligomer Acceptors for Improved Stability and Efficiency. Nat. Energy 2022, 7, 1180–1190.
- 21 Xia, D.; Zhou, S.; Tan, W. L.; Karuthedath, S.; Xiao, C.; Zhao, C.; Laquai, F.; McNeill, C. R.; Li, W. Fused- Ring Induced End-on Orientation in Conjugated Molecular Dyads toward Efficient Single-Component Organic Solar Cells. Aggregate 2023, 4, e279.
- 22 Li, G.; Zhang, X.; Jones, L. O.; Alzola, J. M.; Mukherjee, S.; Feng, L.-w.; Zhu, W.; Stern, C. L.; Huang, W.; Yu, J.; Sangwan, V. K.; DeLongchamp, D. M.; Kohlstedt, K. L.; Wasielewski, M. R.; Hersam, M. C.; Schatz, G. C.; Facchetti, A.; Marks, T. J. Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. J. Am. Chem. Soc. 2021, 143, 6123–6139.
- 23 Xu, W.; Zhang, M.; Ma, X.; Zhu, X.; Jeong, S. Y.; Woo, H. Y.; Zhang, J.; Du, W.; Wang, J.; Liu, X.; Zhang, F. Over 17.4% Efficiency of Layer-by-Layer All-Polymer Solar Cells by Improving Exciton Utilization in Acceptor Layer. Adv. Funct. Mater. 2023, 33, 2215204.
- 24 Xu, X.; Yu, L.; Peng, Q. Recent Advances in Wide Bandgap Polymer Donors and Their Applications in Organic Solar Cells. Chin. J. Chem. 2021, 39, 243–254.
- 25 Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.
- 26 Xu, W.; Ma, X.; Son, J. H.; Jeong, S. Y.; Niu, L.; Xu, C.; Zhang, S.; Zhou, Z.; Gao, J.; Woo, H. Y.; Zhang, J.; Wang, J.; Zhang, F. Smart Ternary Strategy in Promoting the Performance of Polymer Solar Cells Based on Bulk-Heterojunction or Layer-By-Layer Structure. Small 2022, 18, 2104215.
- 27 Chen, H.; Zhang, R.; Chen, X.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W.; Xu, G.; Oh, J.; Kang, S.-H.; Chen, S.; Yang, C.; Brus, J.; Hou, J.; Gao, F.; Li, Y.; Li, Y. A Guest-Assisted Molecular-Organization Approach for >17% Efficiency Organic Solar Cells using Environmentally Friendly Solvents. Nat. Energy 2021, 6, 1045–1053.
- 28 Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151.
- 29 Zhao, X.; An, Q.; Zhang, H.; Yang, C.; Mahmood, A.; Jiang, M.; Jee, M. H.; Fu, B.; Tian, S.; Woo, H. Y.; Wang, Y.; Wang, J.-L. Double Asymmetric Core Optimizes Crystal Packing to Enable Selenophene-based Acceptor with Over 18% Efficiency in Binary Organic Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202216340.
- 30 Luo, Z.; Gao, Y.; Lai, H.; Li, Y.; Wu, Z.; Chen, Z.; Sun, R.; Ren, J.; He, F.; Woo, H.; Min, J.; Yang, C. Asymmetric Side-Chain Substitution Enables a 3d Network Acceptor with Hydrogen Bond Assisted Crystal Packing and Enhanced Electronic Coupling for Efficient Organic Solar Cells. Energy Environ. Sci. 2022, 15, 4601–4611.
- 31 Xu, T.; Luo, Z.; Ma, R.; Chen, Z.; Peña, T.; Liu, H.; Wei, Q.; Li, M.; Zhang, C.; Wu, J. Y. ; Lu, X.; Li, G.; Yang, C. High-Performance Organic Solar Cells Containing Pyrido[2,3-b]quinoxaline-Core-Based Small- Molecule Acceptors with Optimized Orbit Overlap Lengths and Molecular Packing. Angew. Chem. Int. Ed. 2023, 62, e202304127.
- 32 Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.
- 33 Wang, J.; Cui, Y.; Xu, Y.; Xian, K.; Bi, P.; Chen, Z.; Zhou, K.; Ma, L.; Zhang, T.; Yang, Y.; Zu, Y.; Yao, H.; Hao, X.; Ye, L.; Hou, J. A New Polymer Donor Enables Binary All-Polymer Organic Photovoltaic Cells with 18% Efficiency and Excellent Mechanical Robustness. Adv. Mater. 2022, 34, 2205009.
- 34 Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C.-C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.
- 35 Guo, C.; Fu, Y.; Li, D.; Wang, L.; Zhou, B.; Chen, C.; Zhou, J.; Sun, Y.; Gan, Z.; Liu, D.; Li, W.; Wang, T. A Polycrystalline Polymer Donor as Pre-Aggregate toward Ordered Molecular Aggregation for 19.3% Efficiency Binary Organic Solar Cells. Adv. Mater. 2023, 35, 2304921.
- 36
Fan, Q.; Ma, R.; Bi, Z.; Liao, X.; Wu, B.; Zhang, S.; Su, W.; Fang, J.; Zhao, C.; Yan, C.; Ma, W. 19.28% Efficiency and Stable Polymer Solar Cells Enabled by Introducing an Nir-Absorbing Guest Acceptor. Adv. Funct. Mater. 2023, 23, 2211385.
10.1002/adfm.202211385 Google Scholar
- 37 Ma, R.; Yan, C.; Yu, J.; Liu, T.; Liu, H.; Li, Y.; Chen, J.; Luo, Z.; Tang, B.; Lu, X.; Li, G.; Yan, H. High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Lett. 2022, 7, 2547–2556.
- 38 Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420.
- 39 He, C.; Pan, Y.; Ouyang, Y.; Shen, Q.; Gao, Y.; Yan, K.; Fang, J.; Chen, Y.; Ma, C.; Min, J.; Zhang, C.; Zuo, L.; Chen, H. Manipulating the D:A Interfacial Energetics and Intermolecular Packing for 19.2% Efficiency Organic Photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544.
- 40 Ma, R.; Jiang, X.; Fu, J.; Zhu, T.; Yan, C.; Wu, K.; Müller-Buschbaum, P.; Li, G. Revealing the Underlying Solvent Effect on Film Morphology in High-Efficiency Organic Solar Cells through Combined Ex Situ and in situ Observations. Energy Environ. Sci. 2023, 16, 2316–2326.
- 41 Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; Zhang, J.; Wei, Z.; Zhang, X.; Huang, H. Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Adv. Mater. 2022, 34, 2204718.
- 42 Sun, R.; Wu, Y.; Yang, X.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J.; Wang, T.; Guo, J.; Liu, C.; Hao, X.; Zhu, H.; Min, J. Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor. Adv. Mater. 2022, 34, 2110147.
- 43 Gao, W.; Qi, F.; Peng, Z.; Lin, F. R.; Jiang, K.; Zhong, C.; Kaminsky, W.; Guan, Z.; Lee, C. S.; Marks, T. J.; Ade, H.; Jen, A. K. Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor. Adv. Mater. 2022, 34, e2202089.
- 44 Qi, F.; Jiang, K.; Lin, F.; Wu, Z.; Zhang, H.; Gao, W.; Li, Y.; Cai, Z.; Woo, H. Y.; Zhu, Z.; Jen, A. K. Y. Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors. ACS Energy Lett. 2020, 6, 9–15.
- 45 Feng, L.; Yuan, J.; Zhang, Z.; Peng, H.; Zhang, Z.-G.; Xu, S.; Liu, Y.; Li, Y.; Zou, Y. Thieno[3,2-b]pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 31985–31992.
- 46 Zhang, Z.; Li, Y.; Cai, G.; Zhang, Y.; Lu, X.; Lin, Y. Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells. J. Am. Chem. Soc. 2020, 142, 18741–18745.
- 47 Zhou, Z.; Liu, W.; Zhou, G.; Zhang, M.; Qian, D.; Zhang, J.; Chen, S.; Xu, S.; Yang, C.; Gao, F.; Zhu, H.; Liu, F.; Zhu, X. Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation. Adv. Mater. 2020, 32, 1906324.
- 48 Chen, Z.; Ge, J.; Guo, Y.; Zhao, M.; Shi, J.; Qiu, Y.; Zhou, E.; Ge, Z. Modification on the Quinoxaline Unit to Achieve High Open-Circuit Voltage and Morphology Optimization for Organic Solar Cells. ACS Energy Lett. 2022, 7, 3432–3438.
- 49 Chen, H.; Zou, Y.; Liang, H.; He, T.; Xu, X.; Zhang, Y.; Ma, Z.; Wang, J.; Zhang, M.; Li, Q.; Li, C.; Long, G.; Wan, X.; Yao, Z.; Chen, Y. Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Sci. China Chem. 2022, 65, 1362–1373.
- 50 Chen, H.; Liang, H.; Guo, Z.; Zhu, Y.; Zhang, Z.; Li, Z.; Cao, X.; Wang, H.; Feng, W.; Zou, Y.; Meng, L.; Xu, X.; Kan, B.; Li, C.; Yao, Z.; Wan, X.; Ma, Z.; Chen, Y. Central Unit Fluorination of Non-Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18% Efficiency. Angew. Chem. Int. Ed. 2022, 61, e202209580.
- 51 Zou, Y.; Chen, H.; Bi, X.; Xu, X.; Wang, H.; Lin, M.; Ma, Z.; Zhang, M.; Li, C.; Wan, X.; Long, G.; Zhaoyang, Y.; Chen, Y. Peripheral Halogenation Engineering Controls Molecular Stacking to Enable Highly Efficient Organic Solar Cells. Energy Environ. Sci. 2022, 15, 3519–3533.
- 52 Shi, Y.; Chang, Y.; Lu, K.; Chen, Z.; Zhang, J.; Yan, Y.; Qiu, D.; Liu, Y.; Adil, M. A.; Ma, W.; Hao, X.; Zhu, L.; Wei, Z. Enabling Low Voltage Losses and High Photocurrent in Fullerene-Free Organic Photovoltaics. Nat. Commun. 2022, 13, 3256.
- 53 Shen, Y. -F.; Zhang, H.; Zhang, J.; Tian, C.; Shi, Y.; Qiu, D.; Zhang, Z.; Lu, K.; Wei, Z. In Situ Absorption Characterization Guided Slot-Die- Coated High-Performance Large-Area Flexible Organic Solar Cells and Modules. Adv. Mater. 2023, 35, 2209030
- 54 Wang, J.; Zhu, J.; Li, C.; Lin, Y.; Yang, Y.; Ma, Z.; Lu, Y. High-Efficiency Organic Solar Cells Enabled by Non-Fullerene Acceptors with Benzimidazole as the Central Core. Adv. Funct. Mater. 2023, 33, 2304449.
- 55 Gu, Y.; Lai, H.; Chen, Z. -Y.; Zhu, Y.; Sun, Z.; Lai, X.; Wang, H.; Wei, Z.; Chen, L.; Huang, L.; Zhang, Y.; He, F.; Tian, L. Chlorination-Mediated π–π Stacking Enhances the Photodynamic Properties of a NIR-II Emitting Photosensitizer with Extended Conjugation. Angew. Chem. Int. Ed. 2023, 62, e202303476
- 56 Mai, J.; Xiao, Y.; Zhou, G.; Wang, J.; Zhu, J.; Zhao, N.; Zhan, X.; Lu, X. Hidden Structure Ordering Along Backbone of Fused-Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction. Adv. Mater. 2018, 30, 1802888.
- 57 Mishra, A.; Sharma, G. D. Harnessing the Structure-Performance Relationships in Designing Non-Fused Ring Acceptors for Organic Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202219245.
- 58 Yao, S.; Yang, L.; Shi, S.; Zhou, Y.; Long, M.; Zhang, W.; Cai, S.; Huang, C.; Liu, T.; Zou, B. A Two-in-One Annealing Enables Dopant Free Block Copolymer Based Organic Solar Cells with over 16% Efficiency. Chin. J. Chem. 2023, 41, 672–678.