Large-Area Gravure-Printed AgNWs Electrode on Water/Oxygen Barrier Substrate for Long-Term Stable Large-Area Flexible Organic Solar Cells†
Hao Wang
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, SEID SIP, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYaqin Pan
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Yunfei Han
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorZhuo Chen
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Search for more papers by this authorTianyu Liu
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, SEID SIP, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorLianping Zhang
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Qun Luo
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Chang-Qi Ma
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorHao Wang
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, SEID SIP, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYaqin Pan
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Yunfei Han
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorZhuo Chen
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Search for more papers by this authorTianyu Liu
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, SEID SIP, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorLianping Zhang
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Qun Luo
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Chang-Qi Ma
Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorDedicated to the Special Issue of Organic Photovoltaic.
Comprehensive Summary
Large-area AgNWs electrodes (25 cm × 10 cm) were fabricated through roll-to-roll printing on the polyvinyl alcohol (PVA) modified water and oxygen barrier substrate. The modification of the barrier film with PVA improved the wettability of silver nanowires on the barrier films and led to the formation of homogenous large-area AgNWs networks. The mechanical flexibility, especially the adhesion force between the silver electrode and the barrier film substrate was dramatically improved through PVA modification. The efficiency of 13.51% for the flexible OSCs with an area of 0.64 cm2 was achieved based on the PET/barrier film/PVA/AgNWs electrode. The long-term stability showed the flexible OSCs based on the PET/barrier film/PVA/AgNWs electrode have a significantly improved stability relative to the device on PET/AgNWs electrode, and comparable air stability as the rigid device with glass/ITO device. The unencapsulated devices maintained nearly 50% of the original efficiency after storage for 600 h in air. After a simple top encapsulation, the flexible devices remained at 60% of the initial efficiency after 2000 h in the air. Therefore, the flexible AgNWs electrode based on the barrier film would have the potential to improve the air storage stability of organic flexible solar cells.
Supporting Information
Filename | Description |
---|---|
cjoc202300479-sup-0001-supinfo.pdfPDF document, 1.2 MB |
Appendix S1: Supporting Information |
cjoc202300479-sup-0002-supinfo.mp4MPEG-4 video, 2.3 MB |
Appendix S2: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Shen, Y.; Zhang, H.; Zhang, J.; Tian, C.; Shi, Y.; Qiu, D.; Zhang, Z.; Lu, K.; Wei, Z. In Situ Absorption Characterization Guided Slot-Die-Coated High-Performance Large-Area Flexible Organic Solar Cells and Modules. Adv. Mater. 2023, 35, 2209030.
- 2 Min, J.; Bronnbauer, C.; Zhang, Z.; Cui, C.; Luponosov, Y. N.; Ata, I.; Schweizer, P.; Przybilla, T.; Guo, F.; Ameri, T.; Forberich, K.; Spiecker, E.; Bäuerle, P.; Ponomarenko, S. A.; Li, Y.; Brabec, C. J. Fully Solution-Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers. Adv. Funct. Mater. 2016, 26, 4543–4550.
- 3 Jin, W.; Ovhal, M.; Lee, H.; Tyagi, B.; Kang, J. W. Scalable, All-Printed Photocapacitor Fibers and Modules based on Metal-Embedded Flexible Transparent Conductive Electrodes for Self-Charging Wearable Applications. Adv. Energy Mater. 2021, 11, 2003509.
- 4 Cui, N.; Song, Y.; Tan, C.; Zhang, K.; Yang, X.; Dong, S.; Xie, B.; Huang, F. Stretchable Transparent Electrodes for Conformable Wearable Organic Photovoltaic Devices. npj Flex. Electron. 2021, 5, 31.
- 5 Wang, Y.; Chen, Q.; Zhang, G.; Xiao, C.; Wei, Y.; Li, W. Ultrathin Flexible Transparent Composite Electrode via Semi-embedding Silver Nanowires in a Colorless Polyimide for High-Performance Ultraflexible Organic Solar Cells. ACS Appl. Mater. Interface 2022, 14, 5699–5708.
- 6 Zheng, X.; Zuo, L.; Zhao, F.; Li, Y.; Chen, T.; Shan, S.; Yan, K.; Pan, Y.; Xu, B.; Li, C. Z.; Shi, M.; Hou, J.; Chen, H. High-Efficiency ITO-free Organic Photovoltaics with Superior Flexibility and Upscalability. Adv. Mater. 2022, 34, 2200044.
- 7 Liu, Y.; Zhang, J.; Gao, H.; Wang, Y.; Liu, Q.; Huang, S.; Guo, C. F.; Ren, Z. Capillary-Force-Induced Cold Welding in Silver-Nanowire-Based Flexible Transparent Electrodes. Nano Lett. 2017, 17, 1090–1096.
- 8 Chen, X.; Xu, G.; Zeng, G.; Gu, H.; Chen, H.; Xu, H.; Yao, H.; Li, Y.; Hou, J.; Li, Y. Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a "Welding" Flexible Transparent Electrode. Adv. Mater. 2020, 32, 1908478.
- 9 Sun, Y.; Meng, L.; Wan, X.; Guo, Z.; Ke, X.; Sun, Z.; Zhao, K.; Zhang, H.; Li, C.; Chen, Y. Flexible High-Performance and Solution-Processed Organic Photovoltaics with Robust Mechanical Stability. Adv. Funct. Mater. 2021, 31, 2010000.
- 10 Sun, W.; Chen, H.; Zhang, B.; Cheng, Q.; Yang, H.; Chen, Z.; Zeng, G.; Ding, J.; Chen, W.; Li, Y. Host-Guest Active Layer Enabling Annealing-Free, Nonhalogenated Green Solvent Processing for High-Performance Organic Solar Cells. Chin. J. Chem. 2022, 40, 2963–2972.
- 11 Zha, W. S.; Gu, H. M.; Pan, W.; Sun, X.; Han, Y. F.; Li, Z. Y.; Weng, X. F.; Luo, Q.; Yang, S. F.; Ma, C.-Q. Controllable Synthesis and N-doping of HMoOx Nanoparticle Inks through Simple Photoreduction for Solution-Processed Organic Photovoltaics. Chem. Eng. J. 2021, 425, 130620.
- 12 Zhang, X.; Wu, J.; Wang, J.; Yang, Q.; Zhang, B.; Xie, Z. Low-Temperture All-Solution-Processed Transparent Silver Nanowire-Polymer/ AZO Nanoparticles Composite Electrodes for Efficient ITO-free Polymer Solar Cells. ACS Appl. Mater. Interface 2016, 8, 34630–34637.
- 13 Zheng, Z.; Zhang, S. Q.; Wang, J. Q.; Zhang, J. Q.; Zhang, D. Y.; Zhang, Y.; Wei, Z. X.; Tang, Z. Y.; Hou, J. H.; Zhou, H. Q. Exquisite Modulation of ZnO Nanoparticle Electron Transporting Layer for High-Performance Fullerene-Free Organic Solar Cell with Inverted Structure. J. Mater. Chem. A 2019, 7, 3570–3576.
- 14 Sun, Y.; Chang, M.; Meng, L.; Wan, X.; Gao, H.; Zhang, Y.; Zhao, K.; Sun, Z.; Li, C.; Liu, S.; Wang, H.; Liang, J.; Chen, Y. Flexible Organic Photovoltaics based on Water-Processed Silver Nanowire Electrodes. Nat. Electron. 2019, 2, 513–520.
- 15 Dong, X. Y.; Shi, P.; Sun, L. L.; Li, J.; Qin, F.; Xiong, S. X.; Liu, T. F.; Jiang, X. S.; Zhou, Y. H. Flexible Nonfullerene Organic Solar Cells based on Embedded Silver Nanowires with an Efficiency up to 11.6%. J. Mater. Chem. A 2019, 7, 1989–1995.
- 16 Xu, X.; Fukuda, K.; Karki, A.; Park, S.; Kimura, H.; Jinno, H.; Watanabe, N.; Yamamoto, S.; Shimomura, S.; Kitazawa, D.; Yokota, T.; Umezu, S.; Nguyen, T. Q.; Someya, T. Thermally Stable, Highly Efficient, Ultraflexible Organic Photovoltaics. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 4589–4594.
- 17 Bi, P. Q.; Zhang, S. Q.; Wang, J. W.; Ren, J. Z.; Hou, J. H. Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chin. J. Chem. 2021, 39, 2607–2625.
- 18 Zhang, L.; Yang, F.; Deng, W.; Guo, X.; He, Y.; Zhou, J.; Li, H.; Zhang, Y.; Zhou, K.; Zhou, C.; Zou, Y.; Yang, J.; Hu, X.; Ma, W.; Yuan, Y. Organic–Inorganic Hybrid Cathode Interlayer for Efficient Flexible Inverted Organic Solar Modules. Appl. Phys. Lett. 2023, 122, 263903
- 19 Han, Y. F.; Chen, X. L.; Wei, J. F.; Ji, G. Q.; Wang, C.; Zhao, W. C.; Lai, J. Q.; Zha, W. S.; Li, Z. R.; Yan, L. P.; Gu, H. M.; Luo, Q.; Chen, Q.; Chen, L. W.; Hou, J. H.; Su, W. M.; Ma, C.-Q. Efficiency above 12% for 1 cm2 Flexible Organic Solar Cells with Ag/Cu Grid Transparent Conducting Electrode. Adv. Sci. 2019, 6, 1901490.
- 20 Han, Y.; Hu, Z.; Zha, W.; Chen, X.; Yin, L.; Guo, J.; Li, Z.; Luo, Q.; Su, W.; Ma, C. Q. 12.42% Monolithic 25.42 cm2 Flexible Organic Solar Cells Enabled by an Amorphous ITO-Modified Metal Grid Electrode. Adv. Mater. 2022, 34, 2110276.
- 21
Wang, Z. G.; Guo, J. B.; Pan, Y. Q.; Fang, J.; Gong, C.; Mo, L. X.; Luo, Q.; Lin, J.; Ma, C.-Q. Manipulating the Macroscopic and Microscopic Morphology of Large-Area Gravure-Printed ZnO Films for High-Performance Flexible Organic Solar Cells. Energy Environ. Mater. 2023, e12592.
10.1002/eem2.12592 Google Scholar
- 22 Zhu, Y.; Kim, S.; Ma, X.; Byrley, P.; Yu, N.; Liu, Q.; Sun, X.; Xu, D.; Peng, S.; Hartel, M. C.; Zhang, S.; Jucaud, V.; Dokmeci, M. R.; Khademhosseini, A.; Yan, R. Ultrathin-Shell Epitaxial Ag@Au Core-Shell Nanowires for High-Performance and Chemically-Stable Electronic, Optical, and Mechanical Devices. Nano Res. 2021, 14, 4294–4303.
- 23 Li, Y.; Mao, L.; Tang, F.; Chen, Q.; Wang, Y. X.; Ye, F. Y.; Chen, L.; Li, Y. W.; Wu, D.; Cui, Z.; Cai, J. H.; Chen, L. W. Ambient Stable Large-Area Flexible Organic Solar Cells Using Silver Grid Hybrid with Vapor Phase Polymerized poly(3,4-Ethylenedioxythiophene) Cathode. Sol. Energy Mater. Sol. Cells 2015, 143, 354–359.
- 24 Lan, S.; Shin, H.; Kim, H. Electrically Stable Ag Nanowire Network Anodes Densely Passivated by a Conductive Amorphous InSnTiO Layer for Flexible Organic Photovoltaics. Appl. Phys. Lett. 2020, 117, 123303.
- 25 Choo, D. C.; Kim, T. W. Degradation Mechanisms of Silver Nanowire Electrodes under Ultraviolet Irradiation and Heat Treatment. Sci. Rep. 2017, 7, 1696.
- 26 Wang, P.; Jian, M.; Zhang, C.; Wu, M.; Ling, X.; Zhang, J.; Wei, B.; Yang, L. Highly Stable Graphene-Based Flexible Hybrid Transparent Conductive Electrodes for Organic Solar Cells. Adv. Mater. Interfaces 2021, 9, 2101442.
- 27 Lee, S.; Lee, Y.; Lim, Y.; Han, J.; Jeon, I.; Bae, G.; Yoon, Y.; Song, W.; Myung, S.; Lim, J.; An, K.; Lee, S. High Energy Electron Beam Stimulated Nanowelding of Silver Nanowire Networks Encapsulated with Graphene for Flexible and Transparent Electrodes. Sci. Rep. 2019, 9, 9376.
- 28 Yang, Y.; Xu, B. W.; Hou, J. H. Solution-Processed Silver Nanowire as Flexible Transparent Electrodes in Organic Solar Cells. Chin. J. Chem. 2021, 39, 2315–2329.
- 29 Song, M.; Kim, J.; Yang, S.; Kang, J. Solution-Processed Silver Nanowires as a Transparent Conducting Electrode for Air-Stable Inverted Organic Solar Cells. Thin Solid Films 2014, 573, 14–17.
- 30 Güler, E.; Distler, A.; Basu, R.; Brabec, C.; Egelhaaf, H. Fully Solution-Processed, Light-Weight, and Ultraflexible Organic Solar Cells. Flex. Print. Electron. 2022, 7, 025003.
- 31 Wang, Z. G.; Han, Y. F.; Yan, L. P.; Gong, C.; Kang, J. C.; Zhang, H.; Sun, X.; Zhang, L. P.; Lin, J.; Luo, Q.; Ma, C. Q. High Power Conversion Efficiency of 13.61% for 1 cm2 Flexible Polymer Solar Cells Based on Patternable and Mass-Producible Gravure-Printed Silver Nanowire Electrodes. Adv. Funct. Mater. 2020, 31, 2007276.
- 32 Pan, W.; Han, Y. F.; Wang, Z. G.; Gong, C.; Guo, J. B.; Lin, J.; Luo, Q.; Yang, S. F.; Ma, C. Q. An Efficiency of 14.29% and 13.08% for 1 cm2 and 4 cm2 Flexible Organic Solar Cells Enabled by Sol–Gel ZnO and ZnO Nanoparticle Bilayer Electron Transporting Layers. J. Mater. Chem. A 2021, 9, 16889–16897.