Monitoring of Sweat pH and Dual-Mode Anti-Counterfeiting from Metal-Organic Framework-Based Multifunctional Gel
Xiangnan Wang
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorCorresponding Author
Hongli Zhang
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]; [email protected]Search for more papers by this authorJiahe Li
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorCorresponding Author
Gang Zou
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]; [email protected]Search for more papers by this authorXiangnan Wang
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorCorresponding Author
Hongli Zhang
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]; [email protected]Search for more papers by this authorJiahe Li
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorCorresponding Author
Gang Zou
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Monitoring of sweat pH plays important roles in physiological health, nutritional balance, psychological stress, and sports performance. However, the combination of functional MOFs with phosphorescent material to acquire the real-time physiological information, as well as the application of dual mode anti-counterfeiting, has seldom been reported. Herein, we developed multifunctional gel films based on MOFs and phosphorescent dyes which responded to H+ ions and the related mechanism was studied in detail. Upon exposure to H+, the composite gel film exhibited decreased fluorescent signal but enhanced room temperature phosphorescence (RTP), which could be utilized for sweat pH sensing through a dual-mode. Moreover, multifunctional gel films exhibited a potential application in information encryption and anti-counterfeiting by designing of stimulus responsive multiple patterns. This research provided a new avenue for portable and non-invasive sweat pH monitoring methods while also offering insights into stimulus-responsive multifunctional materials.
Supporting Information
Filename | Description |
---|---|
cjoc202300416-sup-0001-supinfo.pdfPDF document, 825.8 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Sakharov, D. A.; Shkurnikov, M. U.; Vagin, M. Y.; Yashina, E. I.; Karyakin, A. A.; Tonevitsky, A. G. Relationship between Lactate Concentrations in Active Muscle Sweat and Whole Blood. Bull. Exp. Biol. Med. 2010, 150, 83–85.
- 2 Patterson, M. J.; Galloway, S. D. R.; Nimmo, M. A. Variations in Regional Sweat Composition in Normal Human Males. Acta Physiol. Scand. 2002, 174, 41–46.
- 3 Ardalan, S.; Hosseinifard, M.; Vosough, M.; Golmohammadi, H. Towards Smart Personalized Perspiration Analysis: An IoT-Integrated Cellulose-Based Microfluidic Wearable Patch for Smartphone Fluorimetric Multi-Sensing of Sweat Biomarkers. Biosens. Bioelectron. 2020, 168, 112450.
- 4 Son, J.; Bae, G. Y.; Lee, S.; Lee, G.; Kim, S. W.; Kim, D.; Chung, S.; Cho, K. Cactus-Spine-Inspired Sweat-Collecting Patch for Fast and Continuous Monitoring of Sweat. Adv. Mater. 2021, 33, 2102740.
- 5 Yang, X.; Yi, J.; Wang, T.; Feng, Y.; Wang, J.; Yu, J.; Zhang, F.; Jiang, Z.; Lv, Z.; Li, H.; Huang, T.; Si, D.; Wang, X.; Cao, R.; Chen, X. Wet-Adhesive On-Skin Sensors Based on Metal–Organic Frameworks for Wireless Monitoring of Metabolites in Sweat. Adv. Mater. 2022, 34, 2201768.
- 6 Lee, J.; Pyo, M.; Lee, S.; Kim, J.; Ra, M.; Kim, W.-Y.; Park, B. J.; Lee, C. W.; Kim, J.-M. Hydrochromic Conjugated Polymers for Human Sweat Pore Mapping. Nat. Commun. 2014, 5, 3736.
- 7 Yang, D. S.; Ghaffari, R.; Rogers, J. A. Sweat as a Diagnostic Biofluid. Science 2023, 379, 760–761.
- 8 Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res. 2019, 52, 523–533.
- 9 Lv, M.; Zhou, W.; Tavakoli, H.; Bautista, C.; Xia, J.; Wang, Z.; Li, X. Aptamer-Functionalized Metal-Organic Frameworks (MOFs) for Biosensing. Biosens. Bioelectron. 2021, 176, 112947.
- 10 Cai, Y.; Zhu, H.; Zhou, W.; Qiu, Z.; Chen, C.; Qileng, A.; Li, K.; Liu, Y. Capsulation of AuNCs with AIE Effect into Metal-Organic Framework for the Marriage of a Fluorescence and Colorimetric Biosensor to Detect Organophosphorus Pesticides. Anal. Chem. 2021, 93, 7275–7282.
- 11 Zhang, H.-W.; Zhu, Q.-Q.; Yuan, R.; He, H. Crystal Engineering of MOF@COF Core-Shell Composites for Ultra-Sensitively Electrochemical Detection. Sens. Actuators B-Chem. 2021, 329, 129144.
- 12 Biswas, S.; Lan, Q.; Xie, Y.; Sun, X.; Wang, Y. Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/ CNT. ACS Appl. Mater. Interfaces 2021, 13, 3295–3302.
- 13 Zhao, L.; Song, X.; Ren, X.; Wang, H.; Fan, D.; Wu, D.; Wei, Q. Ultrasensitive Near-Infrared Electrochemiluminescence Biosensor Derived from Eu-MOF with Antenna Effect and High Efficiency Catalysis of Specific CoS2 Hollow Triple Shelled Nanoboxes for Procalcitonin. Sens. Actuators B-Chem. 2021, 191, 113409.
- 14 Shu, Y.; Su, T.; Lu, Q.; Shang, Z.; Xu, Q.; Hu, X. Highly Stretchable Wearable Electrochemical Sensor Based on Ni-Co MOF Nanosheet- Decorated Ag/rGO/PU Fiber for Continuous Sweat Glucose Detection. Anal. Chem. 2021, 93, 16222–16230.
- 15 Adeel, M.; Asif, K.; Rahman, M. M.; Daniele, S.; Canzonieri, V.; Rizzolio, F. Glucose Detection Devices and Methods Based on Metal–Organic Frameworks and Related Materials. Adv. Funct. Mater. 2021, 31, 2106023.
- 16 Kang, J.-Y.; Koo, W.-T.; Jang, J.-S.; Kim, D.-H.; Jeong, Y. J.; Kim, R.; Ahn, J.; Choi, S.-J.; Kim, I.-D. 2D Layer Assembly of Pt-ZnO Nanoparticles on Reduced Graphene Oxide for Flexible NO2 Sensors. Sens. Actuators B-Chem. 2021, 331, 129371.
- 17 Xiao, J.; Fan, C.; Xu, T.; Su, L.; Zhang, X. An Electrochemical Wearable Sensor for Levodopa Quantification in Sweat Based on a Metal-Organic Framework/Graphene Oxide Composite with Integrated Enzymes. Sens. Actuators B-Chem. 2022, 359, 131586.
- 18 Li, Y.; Wang, R.; Wang, G.-E.; Feng, S.; Shi, W.; Cheng, Y.; Shi, L.; Fu, K.; Sun, J. Mutually Noninterfering Flexible Pressure–Temperature Dual-Modal Sensors Based on Conductive Metal–Organic Framework for Electronic Skin. ACS Nano 2022, 16, 473–484.
- 19 Zhou, W.-L.; Lin, W.; Chen, Y.; Liu, Y. Supramolecular Assembly Confined Purely Organic Room Temperature Phosphorescence and Its Biological Imaging. Chem. Sci. 2022, 13, 7976–7989.
- 20 Zeng, Y.; Nguyen, V. P.; Li, Y.; Kang, D. H.; Paulus, Y. M.; Kim, J. Chorioretinal Hypoxia Detection Using Lipid-Polymer Hybrid Organic Room-Temperature Phosphorescent Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 18182–18193.
- 21 Zhang, Y.; Chen, X.; Xu, J.; Zhang, Q.; Gao, L.; Wang, Z.; Qu, L.; Wang, K.; Li, Y.; Cai, Z.; Zhao, Y.; Yang, C. Cross-Linked Polyphosphazene Nanospheres Boosting Long-Lived Organic Room-Temperature Phosphorescence. J. Am. Chem. Soc. 2022, 144, 6107–6117.
- 22 Song, Z.; Shang, Y.; Lou, Q.; Zhu, J.; Hu, J.; Xu, W.; Li, C.; Chen, X.; Liu, K.; Shan, C.-X.; Bai, X. A Molecular Engineering Strategy for Achieving Blue Phosphorescent Carbon Dots with Outstanding Efficiency Above 50%. Adv. Mater. 2023, 35, 2207970.
- 23 Yu, X.; Liu, K.; Wang, B.; Zhang, H.; Qi, Y.; Yu, J. Time-Dependent Polychrome Stereoscopic Luminescence Triggered by Resonance Energy Transfer Between Carbon Dots-In-Zeolite Composites and Fluorescence Quantum Dots. Adv. Mater. 2023, 35, 2208735.
- 24 Liu, H.; Ye, W.; Mu, Y.; Ma, H.; Lv, A.; Han, S.; Shi, H.; Li, J.; An, Z.; Wang, G.; Huang, W. Highly Efficient Blue Phosphorescence from Pillar-Layer MOFs by Ligand Functionalization. Adv. Mater. 2022, 34, 2107612.
- 25 Zhou, B.; Yan, D. Hydrogen-Bonded Two-Component Ionic Crystals Showing Enhanced Long-Lived Room-Temperature Phosphorescence via TADF-Assisted Förster Resonance Energy Transfer. Adv. Funct. Mater. 2019, 29, 1807599.
- 26 Lin, F.; Wang, H.; Cao, Y.; Yu, R.; Liang, G.; Huang, H.; Mu, Y.; Yang, Z.; Chi, Z. Stepwise Energy Transfer: Near-Infrared Persistent Luminescence from Doped Polymeric Systems. Adv. Mater. 2022, 34, 2108333.
- 27 Li, Y.; Chen, C; Jin, M; Xiang, J.; Tang, J.; Li, Z.; Chen, W.; Zheng, J.; Guo, C. External-Field-Dependent Tunable Emissions of Er3+-In3+ Co-doped Cs2AgBiCl6 for Applications in Anti-Counterfeiting. Mater. Today Phys. 2022, 27, 100830.
- 28 Liang, B.; An, W.; Liu, J.; Dong, Y.; Feng, S.; Huang, W. Ultralong Organic Phosphorescence of Triazatruxene Derivatives for Dynamic Data Encryption and Anti-counterfeiting. Chin. J. Chem. 2023, 41, 2261–2268.
- 29 Yu, X.; Zhang, H.; Yu, J. Luminescence Anti-Counterfeiting: From Elementary to Advanced. Aggregate 2021, 2, 20–34.
- 30 Sun, Y.; Le, X.; Zhou, S.; Chen, T. Recent Progress in Smart Polymeric Gel-Based Information Storage for Anti-Counterfeiting. Adv. Mater. 2022, 34, 2201262.
- 31 Le, X.; Shang, H.; Gu, S.; Yin, G.; Shan, F.; Li, D.; Chen, T. Fluorescent Organohydrogel with Thermal-Induced Color Change for Anti-counterfeiting. Chin. J. Chem. 2021, 40, 337–342.
- 32 Wang, X.; Chu, C.; Wu, Y.; Deng, Y.; Zhou, J.; Yang, M.; Zhang, S.; Huo, D.; Hou, C. Synthesis of Yttrium(III)-Based Rare-Earth Metal-Organic Framework Nanoplates and Its Applications for Sensing of Fluoride Ions and pH. Sensor Actuators B-Chem. 2020, 321, 128455.
- 33 Zhang, Y.; Su, Y.; Wu, H.; Wang, Z.; Wang, C.; Zheng, Y.; Zheng, X.; Gao, L.; Zhou, Q.; Yang, Y.; Chen, X.; Yang, C.; Zhao, Y. Large-Area, Flexible, Transparent, and Long-Lived Polymer-Based Phosphorescence Films. J. Am. Chem. Soc. 2021, 143, 13675–13685.
- 34 Sun, Z.; Deng, H.; Mao, Z.; Li, Z.; Nie, K.; Fu, K.; Chen, J.; Zhao, J.; Zhu, P.; Chi, Z.; Sun R. Shape-Memorable, Self-Healable, Recyclable, and Full-Color Emissive Ultralong Organic Phosphorescence Vitrimers with Exchangeable Covalent Bonds. Adv. Opt. Mater. 2022, 10, 2201558.
- 35 Liang, Z.; Wei, M.; Zhang, S.; Huang, W.; Shi, N.; Lv, A.; Ma, H.; He, Z. Activating Molecular Room-Temperature Phosphorescence by Manipulating Excited-State Energy Levels in Poly(vinyl alcohol) Matrix. ACS Appl. Mater. Interfaces 2023, 15, 35534–35542.
- 36 Ruan, B.; Yang, J.; Zhang, Y.-J.; Ma, N.; Shi, D.; Jiang, T.; Tsai, F.-C. UiO-66 derivate as a fluorescent probe for Fe3+ detection. Talanta 2020, 218, 121207.
- 37 Xu, C.; Du, K.; Wu, Y.; Tan, L.; Li, X. A cycloruthenated complex: Detecting Hg2+ by Hg2+-promoted coordination switch and Cu2+ by coordination. Appl. Organomet. Chem. 2022, 36, e6806.
- 38 Mukherjee, S.; Thilagar, P. Recent Advances in Purely Organic Phosphorescent Materials. Chem. Commun. 2015, 51, 10988–11003.