Bioactive Hydrogels with Pro-coagulation Effect for Hemostasis†
Quanshi Guo
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009 China
Search for more papers by this authorYihang Ding
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
Search for more papers by this authorCorresponding Author
Lisha Yu
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009 China
Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009 China
E-mail: [email protected] (Z.M.); [email protected] (Z.T.); [email protected] (L.Y.)Search for more papers by this authorCorresponding Author
Zongrui Tong
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009 China
Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009 China
E-mail: [email protected] (Z.M.); [email protected] (Z.T.); [email protected] (L.Y.)Search for more papers by this authorCorresponding Author
Zhengwei Mao
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009 China
Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009 China
E-mail: [email protected] (Z.M.); [email protected] (Z.T.); [email protected] (L.Y.)Search for more papers by this authorQuanshi Guo
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009 China
Search for more papers by this authorYihang Ding
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
Search for more papers by this authorCorresponding Author
Lisha Yu
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009 China
Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009 China
E-mail: [email protected] (Z.M.); [email protected] (Z.T.); [email protected] (L.Y.)Search for more papers by this authorCorresponding Author
Zongrui Tong
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009 China
Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009 China
E-mail: [email protected] (Z.M.); [email protected] (Z.T.); [email protected] (L.Y.)Search for more papers by this authorCorresponding Author
Zhengwei Mao
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009 China
Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009 China
E-mail: [email protected] (Z.M.); [email protected] (Z.T.); [email protected] (L.Y.)Search for more papers by this authorDedicated to the Special Issue of Hydrogels.
Comprehensive Summary
Hemostatic hydrogels are widely applied for wound management of damaged tissues, traumatic wounds, and surgical incisions. Some hydrogels composed of bioactive components, including fibrin and thrombin, showed great promise in the clinic due to their good pro-coagulation effect. With the expanding knowledge of cascade reaction of blood coagulation and emerging bioactive substances, massive bioactive hydrogels consisting of peptides, hemocoagulase, polyphosphate (polyP), etc., have been developed as effective hemostatic materials. Based on the coagulation process and mechanism, we summarize the role of reported bioactive hydrogels in hemostasis in this review. We conclude the key points in the coagulation process, including activation of coagulation factors, fibrinogen polymerization, etc., then discuss how to design bioactive hydrogels to accelerate coagulation targeted to these points. Finally, we conclude the progress and propose a perspective of bioactive hydrogels with a pro-coagulation effect for hemostasis.
References
- 1 Berwick, D. M.; Downey, A. S.; Cornett, E. A. A National Trauma Care System to Achieve Zero Preventable Deaths after Injury: Recommendations from a National Academies of Sciences, Engineering, and Medicine Report. JAMA 2016, 316, 927–928.
- 2 Roth, G. A.; Abate, D.; Abate, K. H.; Abay, S. M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788.
- 3 Vos, T.; Allen, C.; Arora, M.; Barber, R. M.; Bhutta, Z. A.; Brown, A.; Carter, A.; Casey, D. C.; Charlson, F. J.; Chen, A. Z. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 310 Diseases and Injuries, 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602.
- 4 McCarty, J. C.; Hashmi, Z. G.; Herrera-Escobar, J. P.; de Jager, E.; Chaudhary, M. A.; Lipsitz, S. R.; Jarman, M.; Caterson, E. J.; Goralnick, E. Effectiveness of the American College of Surgeons Bleeding Control Basic Training among Laypeople Applying Different Tourniquet Types: A Randomized Clinical Trial. JAMA Surg. 2019, 154, 923–929.
- 5 Drake, S. A.; Holcomb, J. B.; Yang, Y.; Thetford, C.; Myers, L.; Brock, M.; Wolf, D. A.; Cron, S.; Persse, D.; McCarthy, J.; Kao, L.; Todd, S. R.; Naik-Mathuria, B. J.; Cox, C.; Kitagawa, R.; Sandberg, G.; Wade, C. E. Establishing a Regional Trauma Preventable/Potentially Preventable Death Rate. Ann. Surg. 2020, 271, 375–382.
- 6 Goolsby, C.; Rouse, E.; Rojas, L.; Goralnick, E.; Levy, M. J.; Kirsch, T.; Eastman, A. L.; Kellermann, A.; Strauss-Riggs, K.; Hurst, N. Post- Mortem Evaluation of Potentially Survivable Hemorrhagic Death in a Civilian Population. J. Am. Coll. Surg. 2018, 227, 502–506.
- 7 Zhang, L.; Liu, M.; Zhang, Y.; Pei, R. Recent Progress of Highly Adhesive Hydrogels as Wound Dressings. Biomacromolecules 2020, 21, 3966–3983.
- 8 Hunt, B. J.; Allard, S.; Keeling, D.; Norfolk, D.; Stanworth, S. J.; Pendry, K.; Haematology, t. B. C. f. S. i. A Practical Guideline for the Haematological Management of Major Haemorrhage. Br. J. Haematol. 2015, 170, 788–803.
- 9 Spahn, D. R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B. J.; Komadina, R.; Maegele, M.; Nardi, G.; Riddez, L.; Samama, C.-M.; Vincent, J.-L.; Rossaint, R. The European Guideline on Management of Major Bleeding and Coagulopathy Following Trauma: Fifth Edition. Crit. Care 2019, 23, 98.
- 10 Moore, E. E.; Moore, H. B.; Kornblith, L. Z.; Neal, M. D.; Hoffman, M.; Mutch, N. J.; Schöchl, H.; Hunt, B. J.; Sauaia, A. Trauma-Induced Coagulopathy. Nat. Rev. Dis. Primers 2021, 7, 30.
- 11 Iba, T.; Levy, J. H.; Warkentin, T. E.; Thachil, J.; van der Poll, T.; Levi, M.; Scientific, t.; Standardization Committee on DIC; Scientific, t.; Perioperative, S. C. o.; Thrombosis, C. C. o. t. I. S. o.; Haemostasis. Diagnosis and Management of Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. J. Thromb. Haemost. 2019, 17, 1989–1994.
- 12 McGonagle, D.; O'Donnell, J. S.; Sharif, K.; Emery, P.; Bridgewood, C. Immune Mechanisms of Pulmonary Intravascular Coagulopathy in Covid-19 Pneumonia. Lancet Rheumatol. 2020, 2, e437–e445.
- 13 Gross, B. A.; Jankowitz, B. T.; Friedlander, R. M. Cerebral Intraparenchymal Hemorrhage: A Review. JAMA 2019, 321, 1295–1303.
- 14 Goralnick, E.; Ezeibe, C.; Chaudhary, M. A.; McCarty, J.; Herrera-Escobar, J. P.; Andriotti, T.; de Jager, E.; Ospina-Delgado, D.; Goolsby, C.; Hunt, R.; Weissman, J. S.; Haider, A.; Jacobs, L.; Group, a. t. S. t. B. N. R. A. C. C. W. Defining a Research Agenda for Layperson Prehospital Hemorrhage Control: A Consensus Statement. JAMA Netw. Open 2020, 3, e209393.
- 15 Chiara, O.; Cimbanassi, S.; Bellanova, G.; Chiarugi, M.; Mingoli, A.; Olivero, G.; Ribaldi, S.; Tugnoli, G.; Basilico, S.; Bindi, F.; Briani, L.; Renzi, F.; Chirletti, P.; Di Grezia, G.; Martino, A.; Marzaioli, R.; Noschese, G.; Portolani, N.; Ruscelli, P.; Zago, M.; Sgardello, S.; Stagnitti, F.; Miniello, S. A Systematic Review on the Use of Topical Hemostats in Trauma and Emergency Surgery. BMC Surg. 2018, 18, 68.
- 16 Tong, Z.; Yang, J.; Lin, L.; Wang, R.; Cheng, B.; Chen, Y.; Tang, L.; Chen, J.; Ma, X. In situ Synthesis of Poly (Γ-Glutamic Acid)/Alginate/Agnp Composite Microspheres with Antibacterial and Hemostatic Properties. Carbohydr. Polym. 2019, 221, 21–28.
- 17 Lu, X.; Li, X.; Yu, J.; Ding, B. Nanofibrous Hemostatic Materials: Structural Design, Fabrication Methods, and Hemostatic Mechanisms. Acta Biomater. 2022, 154, 49–62.
- 18 Zhang, J.; Gao, B.; Ye, B.; Sun, Z.; Qian, Z.; Yu, L.; Bi, Y.; Ma, L.; Ding, Y.; Du, Y.; Wang, W.; Mao, Z. Mitochondrial-Targeted Delivery of Polyphenol-Mediated Antioxidases Complexes against Pyroptosis and Inflammatory Diseases. Adv. Mater. 2023, 35, e2208571.
- 19 Wang, H.; Cheng, J.; Sun, F.; Dou, X.; Liu, J.; Wang, Y.; Li, M.; Gao, J.; Liu, X.; Wang, X.; Yang, F.; Zhu, Z.; Shen, H.; Zhang, L.; Tang, P.; Wu, D. A Super Tough, Rapidly Biodegradable, Ultrafast Hemostatic Bioglue. Adv. Mater. 2023, 35, 2208622.
- 20 Shi, J.; Wang, D.; Wang, H.; Yang, X.; Gu, S.; Wang, Y.; Chen, Z.; Chen, Y.; Gao, J.; Yu, L.; Ding, J. An Injectable Hemostatic Peg-Based Hydrogel with on-Demand Dissolution Features for Emergency Care. Acta Biomater. 2022, 145, 106–121.
- 21 Fang, W.; Yang, L.; Chen, Y.; Hu, Q. Bioinspired Multifunctional Injectable Hydrogel for Hemostasis and Infected Wound Management. Acta Biomater. 2023, 161, 50–66.
- 22 Ding, Y.; Tong, Z.; Jin, L.; Ye, B.; Zhou, J.; Sun, Z.; Yang, H.; Hong, L.; Huang, F.; Wang, W.; Mao, Z. An Nir Discrete Metallacycle Constructed from Perylene Bisimide and Tetraphenylethylene Fluorophores for Imaging-Guided Cancer Radio-Chemotherapy. Adv. Mater. 2022, 34, e2106388.
- 23 Teng, L.; Song, Y.; Hu, L.; Bai, Q.; Zhang, X.; Dong, C. M. Nitric Oxide-Releasing Poly(L-Glutamic Acid) Hybrid Hydrogels for Accelerating Diabetic Wound Healing. Chin. J. Chem. 2023, 41, 2103–2112.
- 24 Sheng, Z.; Xu, Y.; Tong, Z.; Mao, Z.; Zheng, Y. Dual Functional Electrospun Nanofiber Membrane with Ros Scavenging and Revascularization Ability for Diabetic Wound Healing. Colloid Interface Sci. Commun. 2022, 48, 100620.
- 25 Jin, L.; Cao, F.; Gao, Y.; Zhang, C.; Qian, Z.; Zhang, J.; Mao, Z. Microenvironment-Activated Nanozyme-Armed Bacteriophages Efficiently Combat Bacterial Infection. Adv. Mater. 2023, 35, e2301349.
- 26 Wen, Q.; Cai, Q.; Fu, P.; Chang, D.; Xu, X.; Wen, T.-J.; Wu, G.-P.; Zhu, W.; Wan, L.-S.; Zhang, C.; Zhang, X.-H.; Jin, Q.; Wu, Z.-L.; Gao, C.; Zhang, H.; Huang, N.; Li, C.-Z.; Li, H. Key Progresses of Moe Key Laboratory of Macromolecular Synthesis and Functionalization in 2021. Chin. Chem. Lett. 2023, 34, 107592.
- 27 Ren, J.; Shu, X.; Wang, Y.; Wang, D.; Wu, G.; Zhang, X.; Jin, Q.; Liu, J.; Wu, Z.; Xu, Z.; Li, C.-Z.; Li, H. Key Progresses of Moe Key Laboratory of Macromolecular Synthesis and Functionalization in 2020. Chin. Chem. Lett. 2022, 33, 1650–1658.
- 28 Deng, X.; Chen, K.; Pang, K.; Liu, X.; Gao, M.; Ren, J.; Yang, G.; Wu, G.; Zhang, C.; Ni, X.; Zhang, P.; Ji, J.; Liu, J.; Mao, Z.; Wu, Z.; Xu, Z.; Zhang, H.; Li, H. Key Progresses of Moe Key Laboratory of Macromolecular Synthesis and Functionalization in 2022. Chin. Chem. Lett. 2023, 108861.
- 29 Montazerian, H.; Davoodi, E.; Baidya, A.; Baghdasarian, S.; Sarikhani, E.; Meyer, C. E.; Haghniaz, R.; Badv, M.; Annabi, N.; Khademhosseini, A.; Weiss, P. S. Engineered Hemostatic Biomaterials for Sealing Wounds. Chem. Rev. 2022, 122, 12864–12903.
- 30 Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722.
- 31 Yang, J.; Chen, Y.; Zhao, L.; Feng, Z.; Peng, K.; Wei, A.; Wang, Y.; Tong, Z.; Cheng, B. Preparation of a Chitosan/Carboxymethyl Chitosan/ Agnps Polyelectrolyte Composite Physical Hydrogel with Self-Healing Ability, Antibacterial Properties, and Good Biosafety Simultaneously, and Its Application as a Wound Dressing. Compos. Pt. B-Eng. 2020, 197, 108139.
- 32 Tong, Z.; Jin, L.; Oliveira, J. M.; Reis, R. L.; Zhong, Q.; Mao, Z.; Gao, C. Adaptable Hydrogel with Reversible Linkages for Regenerative Medicine: Dynamic Mechanical Microenvironment for Cells. Bioact. Mater. 2021, 6, 1375–1387.
- 33 Yang, H.; Ding, Y.; Tong, Z.; Qian, X.; Xu, H.; Lin, F.; Sheng, G.; Hong, L.; Wang, W.; Mao, Z. Ph-Responsive Hybrid Platelet Membrane-Coated Nanobomb with Deep Tumor Penetration Ability and Enhanced Cancer Thermal/Chemodynamic Therapy. Theranostics 2022, 12, 4250–4268.
- 34 Ding, Y.; Sun, Z.; Gao, Y.; Zhang, S.; Yang, C.; Qian, Z.; Jin, L.; Zhang, J.; Zeng, C.; Mao, Z.; Wang, W. Plasmon-Driven Catalytic Chemotherapy Augments Cancer Immunotherapy through Induction of Immunogenic Cell Death and Blockage of Ido Pathway. Adv. Mater. 2021, 33, e2102188.
- 35 Xia, X.; Xu, X.; Wang, B.; Zhou, D.; Zhang, W.; Xie, X.; Lai, H.; Xue, J.; Rai, A.; Li, Z.; Peng, X.; Zhao, P.; Bian, L.; Chiu, P. W.-Y. Adhesive Hemostatic Hydrogel with Ultrafast Gelation Arrests Acute Upper Gastrointestinal Hemorrhage in Pigs. Adv. Funct. Mater. 2022, 32, 2109332.
- 36 Bayat, N.; Zhang, Y.; Falabella, P.; Menefee, R.; Whalen, J. J.; Humayun, M. S.; Thompson, M. E. A Reversible Thermoresponsive Sealant for Temporary Closure of Ocular Trauma. Sci. Transl. Med. 2017, 9, eaan3879.
- 37 Cao, F.; Jin, L.; Gao, Y.; Ding, Y.; Wen, H.; Qian, Z.; Zhang, C.; Hong, L.; Yang, H.; Zhang, J.; Tong, Z.; Wang, W.; Chen, X.; Mao, Z. Artificial- Enzymes-Armed Bifidobacterium Longum Probiotics for Alleviating Intestinal Inflammation and Microbiota Dysbiosis. Nat. Nanotechnol. 2023, 18, 617–627.
- 38 Tong, Z.; Guo, Q.; Xu, G.; Gao, Y.; Yang, H.; Ding, Y.; Wang, W.; Mao, Z. Supramolecular Hydrogel-Loaded Prussian Blue Nanoparticles with Photothermal and Ros Scavenging Ability for Tumor Postoperative Treatments. Compos. Pt. B-Eng. 2022, 237, 109872.
- 39 Zheng, Q.; Shen, H.; Tong, Z.; Cheng, L.; Xu, Y.; Feng, Z.; Liao, S.; Hu, X.; Pan, Z.; Mao, Z.; Wang, Y. A Thermosensitive, Reactive Oxygen Species-Responsive, Mr409-Encapsulated Hydrogel Ameliorates Disc Degeneration in Rats by Inhibiting the Secretory Autophagy Pathway. Theranostics 2021, 11, 147–163.
- 40 Versteeg, H. H.; Heemskerk, J. W. M.; Levi, M.; Reitsma, P. H. New Fundamentals in Hemostasis. Physiol. Rev. 2013, 93, 327–358.
- 41 Zhang, X.; Yao, D.; Zhao, W.; Zhang, R.; Yu, B.; Ma, G.; Li, Y.; Hao, D.; Xu, F.-J. Engineering Platelet-Rich Plasma Based Dual-Network Hydrogel as a Bioactive Wound Dressing with Potential Clinical Translational Value. Adv. Funct. Mater. 2021, 31, 2009258.
- 42 Kumar, V. A.; Taylor, N. L.; Jalan, A. A.; Hwang, L. K.; Wang, B. K.; Hartgerink, J. D. A Nanostructured Synthetic Collagen Mimic for Hemostasis. Biomacromolecules 2014, 15, 1484–1490.
- 43 Pourshahrestani, S.; Zeimaran, E.; Kadri, N. A.; Mutlu, N.; Boccaccini, A. R. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv. Healthc. Mater. 2020, 9, 2000905.
- 44 Liu, L.; Hu, E.; Yu, K.; Xie, R.; Lu, F.; Lu, B.; Bao, R.; Li, Q.; Dai, F.; Lan, G. Recent Advances in Materials for Hemostatic Management. Biomater. Sci. 2021, 9, 7343–7378.
- 45 Yang, X.; Liu, W.; Li, N.; Wang, M.; Liang, B.; Ullah, I.; Neve, A. L.; Feng, Y.; Chen, H.; Shi, C. Design and Development of Polysaccharide Hemostatic Materials and Their Hemostatic Mechanism. Biomater. Sci. 2017, 5, 2357–2368.
- 46 Versteeg, H. H.; Heemskerk, J. W. M.; Levi, M.; Reitsma, P. H. New Fundamentals in Hemostasis. Physiol. Rev. 2013, 93, 327–358.
- 47 Davie, E. W.; Ratnoff, O. D. Waterfall Sequence for Intrinsic Blood Clotting. Science 1964, 145, 1310–1312.
- 48 Dahlbäck, B. Blood Coagulation. Lancet 2000, 355, 1627–1632.
- 49 Macfarlane, R. G. An Enzyme Cascade in the Blood Clotting Mechanism, and Its Function as a Biochemical Amplifier. Nature 1964, 202, 498–499.
- 50 Monroe, D. M.; Hoffman, M.; Roberts, H. R. Platelets and Thrombin Generation. Atertio. Thromb. Vasc. Biol. 2002, 22, 1381–1389.
- 51 Mosesson, M. W.; Siebenlist, K. R.; Meh, D. A. The Structure and Biological Features of Fibrinogen and Fibrin. Ann. N. Y. Acad. Sci. 2001, 936, 11–30.
- 52
Weisel, J. W.; Litvinov, R. I. F ibrin Formation, Structure and Properties. In Fibrous Proteins: Structures and Mechanisms, Eds.: D. A. D. Parry; J. M. Squire, Springer International Publishing, Cham, 2017, pp. 405–456.
10.1007/978-3-319-49674-0_13 Google Scholar
- 53 Sang, Y.; Roest, M.; de Laat, B.; de Groot, P. G.; Huskens, D. Interplay between Platelets and Coagulation. Blood Rev. 2021, 46, 100733.
- 54 Posma, J. J. N.; Posthuma, J. J.; Spronk, H. M. H. Coagulation and Non-Coagulation Effects of Thrombin. J. Thromb. Haemost. 2016, 14, 1908–1916.
- 55 Ruggeri, Z. M. Platelets in Atherothrombosis. Nat. Med. 2002, 8, 1227–1234.
- 56 Hickman, D. A.; Pawlowski, C. L.; Sekhon, U. D. S.; Marks, J.; Gupta, A. S. Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Adv. Mater. 2018, 30, 1700859.
- 57 Wong, P. C.; Crain, E., Jr.; Watson, C. Comparative Antithrombotic and Antihemostatic Effects of the Direct Factor Xa Inhibitors, Apixaban and Rivaroxaban, and the Direct Thrombin Inhibitors, Dabigatran and Lepirudin, in Rabbit Models of Venous Thrombosis and Bleeding Time. Blood 2008, 112, 3025–3025.
- 58 Phillips, D.; Charo, I.; Parise, L.; Fitzgerald, L. The Platelet Membrane Glycoprotein IIb-IIIa Complex. Blood 1988, 71, 831–843.
- 59 Durrant, T. N.; van den Bosch, M. T.; Hers, I. Integrin ΑIIbβ3 Outside-in Signaling. Blood 2017, 130, 1607–1619.
- 60 Ma, Y.-Q.; Qin, J.; Plow, E. F. Platelet Integrin ΑIIbβ3: Activation Mechanisms. J. Thromb. Haemost. 2007, 5, 1345–1352.
- 61 Santos, M. T.; Valles, J.; Marcus, A. J.; Safier, L. B.; Broekman, M. J.; Islam, N.; Ullman, H. L.; Eiroa, A. M.; Aznar, J. Enhancement of Platelet Reactivity and Modulation of Eicosanoid Production by Intact Erythrocytes. A New Approach to Platelet Activation and Recruitment. J. Clin. Invest. 1991, 87, 571–580.
- 62 Smith, S. A.; Mutch, N. J.; Baskar, D.; Rohloff, P.; Docampo, R.; Morrissey, J. H. Polyphosphate Modulates Blood Coagulation and Fibrinolysis. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 903–908.
- 63 Sawada, S.; Ishikawa, C.; Tanji, H.; Mori, N. Human T-Cell Leukemia Virus Type 1 Tax Activates Caveolin-1 Gene Expression. Blood 2008, 112, 2816–2816.
- 64 Moroi, M.; Jung, S. M.; Nomura, S.; Sekiguchi, S.; Ordinas, A.; Diaz-Ricart, M. Analysis of the Involvement of the Von Willebrand Factor–Glycoprotein Ib Interaction in Platelet Adhesion to a Collagen-Coated Surface under Flow Conditions. Blood 1997, 90, 4413–4424.
- 65 Nieswandt, B.; Watson, S. P. Platelet-Collagen Interaction: Is Gpvi the Central Receptor? Blood 2003, 102, 449–461.
- 66 Manon-Jensen, T.; Kjeld, N. G.; Karsdal, M. A. Collagen-Mediated Hemostasis. J. Thromb. Haemost. 2016, 14, 438–448.
- 67 Tompeck, A. J.; Gajdhar, A. u. R.; Dowling, M.; Johnson, S. B.; Barie, P. S.; Winchell, R. J.; King, D.; Scalea, T. M.; Britt, L. D.; Narayan, M. A Comprehensive Review of Topical Hemostatic Agents: The Good, the Bad, and the Novel. J. Trauma Acute Care Surg. 2020, 88, e1–e21.
- 68 Clemetson, K. J.; Clemetson, J. M. Platelet Collagen Receptors. Thromb. Haemost. 2001, 86, 189–197.
- 69 van der Meijden, P. E. J.; Heemskerk, J. W. M. Platelet Biology and Functions: New Concepts and Clinical Perspectives. Nat. Rev. Cardiol. 2019, 16, 166–179.
- 70 Tillman, B. F.; Gruber, A.; McCarty, O. J. T.; Gailani, D. Plasma Contact Factors as Therapeutic Targets. Blood Rev. 2018, 32, 433–448.
- 71 van der Meijden, P. E.; Munnix, I. C.; Auger, J. M.; Govers-Riemslag, J. W.; Cosemans, J. M.; Kuijpers, M. J.; Spronk, H. M.; Watson, S. P.; Renne, T.; Heemskerk, J. W. Dual Role of Collagen in Factor XII-Dependent Thrombus Formation. Blood 2009, 114, 881–890.
- 72 Garcia-Orue, I.; Santos-Vizcaino, E.; Sanchez, P.; Gutierrez, F. B.; Aguirre, J. J.; Hernandez, R. M.; Igartua, M. Bioactive and Degradable Hydrogel Based on Human Platelet-Rich Plasma Fibrin Matrix Combined with Oxidized Alginate in a Diabetic Mice Wound Healing Model. Mater. Sci. Eng. C Mater. Biol. Appl. 2022, 135, 112695.
- 73 Heher, P.; Mühleder, S.; Mittermayr, R.; Redl, H.; Slezak, P. Fibrin- Based Delivery Strategies for Acute and Chronic Wound Healing. Adv. Drug Del. Rev. 2018, 129, 134–147.
- 74 Wang, K.; Mosser, G.; Haye, B.; Baccile, N.; Le Griel, P.; Pernot, P.; Cathala, B.; Trichet, L.; Coradin, T. Cellulose Nanocrystal-Fibrin Nanocomposite Hydrogels Promoting Myotube Formation. Biomacromolecules 2021, 22, 2740–2753.
- 75 Urosev, I.; Lopez Morales, J.; Nash, M. A. Phase Separation of Intrinsically Disordered Protein Polymers Mechanically Stiffens Fibrin Clots. Adv. Funct. Mater. 2020, 30, 2005245.
- 76 Chen, J.; López, J. A. Interactions of Platelets with Subendothelium and Endothelium. Microcirculation 2005, 12, 235–246.
- 77 Manon-Jensen, T.; Kjeld, N. G.; Karsdal, M. A. Collagen-Mediated Hemostasis. J. Thromb. Haemost. 2016, 14, 438–448.
- 78 Shi, Z.; Shi, C. C.; Liu, C. K.; Sun, H. Y.; Ai, S. H.; Liu, X. D.; Wang, H. Y.; Gan, Y. S.; Dai, H. J.; Wang, X. Q.; Huang, F. Incorporation of Tissue Factor-Integrated Liposome and Silica Nanoparticle into Collagen Hydrogel as a Promising Hemostatic System. J. Biomater. Sci.-Polym. Ed. 2023, 34, 1090–1100.
- 79 Merritt, R. Microcrystalline Collagen. A New Hemostatic Agent. Am. J. Surg. 1970, 120, 330.
- 80 De Rosa, P.; Valeriani, G.; Barbato, G.; Cerbone, V.; Ciccone, M.; Russo, E.; Vicedomini, D. Postexplant Residual Cavity Hemostasis with a Tachosil Patch. Transplant. Proc. 2011, 43, 1069–1071.
- 81 Yang, L. T.; Chen, K. L.; Liu, P.; Kang, Y. T.; Shen, S. B.; Qu, C. L.; Gong, S. Z.; Liu, Y. G.; Gao, Y. L. Preparation of Nile Tilapia Skin Collagen Powder by Low-Temperature and Comprehensive Evaluation of Hemostasis and Wound Healing. Int. J. Artif. Organs 2023, 46, 99–112.
- 82 Shi, X. Y.; Fang, Q.; Ding, M.; Wu, J.; Ye, F.; Lv, Z. B.; Jin, J. Microspheres of Carboxymethyl Chitosan, Sodium Alginate and Collagen for a Novel Hemostatic in vitro Study. J. Biomater. Appl. 2016, 30, 1092–1102.
- 83 Prior, J. J.; Wallace, D. G.; Harner, A.; Powers, N. A Sprayable Hemostat Containing Fibrillar Collagen, Bovine Thrombin, and Autologous Plasma. Ann. Thorac. Surg. 1999, 68, 479–485.
- 84 Zhou, Y. F.; Liu, W.; Gan, B.; Wang, Y. H.; Fan, Z. Q.; Yang, Y. C.; Xiong, X.; Li, Y. L.; Chen, H. Z.; Yu, M.; Peng, X. S.; Zhou, Y. B. Non-Cross- Linked Collagen Type I Microfibers for Improved Hemostasis and Wound Healing. J. Mater. Sci. 2022, 57, 13570–13585.
- 85 Yan, X. Y.; Chen, Y. N.; Dan, N. H.; Dan, W. H. A Novel Thermosensitive Growth-Promoting Collagen Fibers Composite Hemostatic Gel. J. Mater. Chem. B 2022, 10, 4070–4082.
- 86 Binlateh, T.; Thammanichanon, P.; Rittipakorn, P.; Thinsathid, N.; Jitprasertwong, P. Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics 2022, 7, 34.
- 87 MacDonald, M. H.; Zhang, G.; Tasse, L.; Wang, D. D.; De Leon, H.; Kocharian, R. Hemostatic Efficacy of Two Topical Adjunctive Hemostats in a Porcine Spleen Biopsy Punch Model of Moderate Bleeding. J. Mater. Sci.-Mater. Med. 2021, 32, 127.
- 88 Cheng, Y.; Lu, S. T.; Hu, Z.; Zhang, B. J.; Li, S. D.; Hong, P. Z. Marine Collagen Peptide Grafted Carboxymethyl Chitosan: Optimization Preparation and Coagulation Evaluation. Int. J. Biol. Macromol. 2020, 164, 3953–3964.
- 89 Bak, J. B.; Singh, A.; Shekarriz, B. Use of Gelatin Matrix Thrombin Tissue Sealant as an Effective Hemostatic Agent During Laparoscopic Partial Nephrectomy. J. Urol. 2004, 171, 780–782.
- 90 Polidoro, D. P.; Kass, P. H. Evaluation of a Gelatin Matrix as a Topical Hemostatic Agent for Hepatic Bleeding in the Dog. J. Am. Anim. Hosp. Assoc. 2013, 49, 308–317.
- 91 di Lena, F. Hemostatic Polymers: The Concept, State of the Art and Perspectives. J. Mater. Chem. B 2014, 2, 3567–3577.
- 92 Pursifull, N. F.; Morey, A. F. Tissue Glues and Nonsuturing Techniques. Curr. Opin. Urol. 2007, 17, 396–401.
- 93 Kim, O. V.; Litvinov, R. I.; Chen, J.; Chen, D. Z.; Weisel, J. W.; Alber, M. S. Compression-Induced Structural and Mechanical Changes of Fibrin-Collagen Composites. Matrix Biol. 2017, 60–61, 141–156.
- 94 Lv, S.; Cai, M.; Leng, F.; Jiang, X. Biodegradable Carboxymethyl Chitin-Based Hemostatic Sponges with High Strength and Shape Memory for Non-Compressible Hemorrhage. Carbohydr. Polym. 2022, 288, 119369.
- 95 Yang, Y.; Zhang, Y. Y.; Min, Y. P.; Chen, J. H. Preparation of Methacrylated Hyaluronate/Methacrylated Collagen Sponges with Rapid Shape Recovery and Orderly Channel for Fast Blood Absorption as Hemostatic Dressing. Int. J. Biol. Macromol. 2022, 222, 30–40.
- 96 Yan, T. S.; Cheng, F.; Wei, X. J.; Huang, Y. D.; He, J. M. Biodegradable Collagen Sponge Reinforced with Chitosan/Calcium Pyrophosphate Nanoflowers for Rapid Hemostasis. Carbohydr. Polym. 2017, 170, 271–280.
- 97 Pan, H.; Fan, D. D.; Duan, Z. G.; Zhu, C. H.; Fu, R. Z.; Li, X. Non-Stick Hemostasis Hydrogels as Dressings with Bacterial Barrier Activity for Cutaneous Wound Healing. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 105, 110118.
- 98 Lundblad, R. L.; Bradshaw, R. A.; Gabriel, D.; Ortel, T. L.; Lawson, J.; Mann, K. G. A Review of the Therapeutic Uses of Thrombin. Thromb. Haemost. 2004, 91, 851–860.
- 99 Pieters, M.; Wolberg, A. S. Fibrinogen and Fibrin: An Illustrated Review. Research and Practice in Thromb. Haemost. 2019, 3, 161–172.
- 100 Liu, L. B.; Freedman, J.; Hornstein, A.; Fenton, J. W.; Ofosu, F. A. Thrombin Binding to Platelets and Their Activation in Plasma. Br. J. Haematol. 1994, 88, 592–600.
- 101
Cronkite, E. P.; Lozner, E. L.; Deaver, J. M. Use of Thrombin and Fibrinogen in Skin Grafting: Preliminary Report. J. Am. Med. Assoc. 1944, 124, 976–978.
10.1001/jama.1944.02850140022006 Google Scholar
- 102 DeAnglis, A. P.; Nur, I.; Gorman, A. J.; Meidler, R. A Method to Measure Thrombin Activity in a Mixture of Fibrinogen and Thrombin Powders. Blood Coagul. Fibrinolysis 2017, 28, 134–138.
- 103 Holcomb, J. B.; McClain, J. M.; Pusateri, A. E.; Beall, D.; Macaitis, J. M.; Harris, R. A.; MacPhee, M. J.; Hess, J. R. Fibrin Sealant Foam Sprayed Directly on Liver Injuries Decreases Blood Loss in Resuscitated Rats. J. Trauma Acute Care Surg. 2000, 49, 246–250.
- 104 Erdogan, D.; van Gulik, T. M. Evolution of Fibrinogen-Coated Collagen Patch for Use as a Topical Hemostatic Agent. J. Biomed. Mater. Res. Part B 2008, 85B, 272–278.
- 105 Ramot, Y.; Steiner, M.; Lavie, Y.; Ezov, N.; Laub, O.; Cohen, E.; Schwartz, Y.; Nyska, A. Safety and Efficacy of Sfilm-Fs, a Novel Biodegradable Fibrin Sealant, in Gottingen Minipigs. J. Toxicol. Pathol. 2021, 34, 319–330.
- 106 Daud, A.; Kaur, B.; McClure, G. R.; Belley-Cote, E. P.; Harlock, J.; Crowther, M.; Whitlock, R. P. Fibrin and Thrombin Sealants in Vascular and Cardiac Surgery: A Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 469–478.
- 107 Fibrin: A Versatile Scaffold for Tissue Engineering Applications. Tissue Eng. Part B-Rev. 2008, 14, 199–215.
- 108 Lee, M. F.-H.; Ananda, A. Self-Assembling Rada16 Peptide Hydrogel Supports Hemostasis, Synechiae Reduction, and Wound Healing in a Sheep Model of Endoscopic Nasal Surgery. Auris Nasus Larynx 2022, 50, 365–373.
- 109 Evans, L. A.; Morey, A. F. Hemostatic Agents and Tissue Glues in Urologic Injuries and Wound Healing. Urol. Clin. N. Am. 2006, 33, 1–12.
- 110(a) Shukla, A.; Fang, J. C.; Puranam, S.; Jensen, F. R.; Hammond, P. T. Hemostatic Multilayer Coatings. Adv. Mater. 2012, 24, 492–496; (b) Shi, Z. H.; Lan, G. Q.; Hu, E. L.; Lu, F.; Qian, P.; Liu, J. W.; Dai, F. Y.; Xie, R. Q. Puff Pastry-Like Chitosan/Konjac Glucomannan Matrix with Thrombin-Occupied Microporous Starch Particles as a Composite for Hemostasis. Carbohydr. Polym. 2020, 232, 115814.
- 111 Verma, S. K.; Yaghoobi, H.; Kreplak, L.; Frampton, J. P. Nonwoven Hemostatic Dressings Formed by Contact Drawing of Interposed Polyethylene Oxide (Peo)-Fibrinogen and Peo-Thrombin Microfibers. Adv. Mater. Interfaces 2022, 10, 2202119.
- 112 Qin, X.; Mukerabigwi, J. F.; Ma, M.; Huang, R.; Ma, M.; Huang, X.; Cao, Y.; Yu, Y. In situ Photo-Crosslinking Hydrogel with Rapid Healing, Antibacterial, and Hemostatic Activities. e-Polymers 2021, 21, 606–615.
- 113 Sun, W.; Mu, C.; Zhang, X.; Shi, H.; Yan, Q.; Luan, S. Mussel-Inspired Polysaccharide-Based Sponges for Hemostasis and Bacteria Infected Wound Healing. Carbohydr. Polym. 2022, 295, 119868.
- 114 Wang, N.; Zhao, S. Y.; Tian, X. Y.; Guang, S. Y.; Xu, H. Y. Fabrication of Microspheres Containing Coagulation Factors by Reverse Microemulsion Method for Rapid Hemostasis and Wound Healing. Colloid Surf. B-Biointerfaces 2022, 218, 112742.
- 115 Shefa, A. A.; Taz, M.; Lee, S. Y.; Lee, B. T. Enhancement of Hemostatic Property of Plant Derived Oxidized Nanocellulose-Silk Fibroin Based Scaffolds by Thrombin Loading. Carbohydr. Polym. 2019, 208, 168–179.
- 116 Lee, M. H.; Lee, D. R.; Chon, J. W.; Chung, D. J. Hemostatic Patches Based on Crosslinked Chitosan Films Applied in Interventional Procedures. Polymers 2021, 13, 2402.
- 117 Veverka, M.; Murányi, A.; Bakoš, D.; Kochan, J.; Jorík, V.; Omastová, M. Arabinogalactan: Β-Glucan as Novel Biodegradable Carriers for Recombinant Human Thrombin. J. Biomater. Sci.-Polym. Ed. 2015, 27, 1–16.
- 118 Liu, W.; Yang, X.; Li, P.; Sang, F.; Cao, L.; Zhang, B.; Meng, Z.; Ma, Z.; Shi, C. Thrombin Embedded in Emps@Thr/Sponge with Enhanced Procoagulant Ability for Uncompressible and Massive Hemorrhage Control. ACS Appl. Bio Mater. 2021, 4, 7643–7652.
- 119 Cheng, H. H.; Xiong, J.; Xie, Z. N.; Zhu, Y. T.; Liu, Y. M.; Wu, Z. Y.; Yu, J.; Guo, Z. X. Thrombin-Loaded Poly(Butylene Succinate)-Based Electrospun Membranes for Rapid Hemostatic Application. Macromol. Mater. Eng. 2018, 303, 1700395.
- 120 Mendes, L. G.; Ferreira, F. V.; Sielski, M. S.; Livi, S.; Rocco, S. A.; Sforca, M. L.; Burga-Sanchez, J.; Vicente, C. P.; Mei, L. H. I. Electrospun Nanofibrous Architectures of Thrombin-Loaded Poly(Ethylene Oxide) for Faster in vivo Wound Clotting. ACS Appl. Bio Mater. 2021, 4, 5240–5250.
- 121 Ibne Mahbub, M. S.; Sultana, T.; Gwon, J.-G.; Lee, B.-T. Fabrication of Thrombin Loaded Tempo-Oxidized Cellulose Nanofiber-Gelatin Sponges and Their Hemostatic Behavior in Rat Liver Hemorrhage Model. J. Biomater. Sci. Polym. Ed. 2022, 33, 499–516.
- 122 Li, G. F.; Quan, K. C.; Xu, C. C.; Deng, B.; Wang, X. Synergy in Thrombin-Graphene Sponge for Improved Hemostatic Efficacy and Facile Utilization. Colloid Surf. B-Biointerfaces 2018, 161, 27–34.
- 123 Li, X. H.; Ji, X. F.; Chen, K.; Ullah, M. W.; Li, B. S.; Cao, J. M.; Xiao, L.; Xiao, J.; Yang, G. Immobilized Thrombin on X-Ray Radiopaque Polyvinyl Alcohol/Chitosan Embolic Microspheres for Precise Localization and Topical Blood Coagulation. Bioact. Mater. 2021, 6, 2105–2119.
- 124 Xuan, F.; Rong, J.; Liang, M.; Zhang, X.; Sun, J.; Zhao, L.; Li, Y.; Liu, D.; Li, F.; Wang, X.; Han, Y. Biocompatibility and Effectiveness Evaluation of a New Hemostatic Embolization Agent: Thrombin Loaded Alginate Calcium Microsphere. Biomed Res. Int. 2017, 2017, 1875258.
- 125 Rong, J. J.; Liang, M.; Xuan, F. Q.; Sun, J. Y.; Zhao, L. J.; Zhen, H. Z.; Tian, X. X.; Liu, D.; Zhang, Q. Y.; Peng, C. F.; Yao, T. M.; Li, F.; Wang, X. Z.; Han, Y. L.; Yu, W. T. Alginate-Calcium Microsphere Loaded with Thrombin: A New Composite Biomaterial for Hemostatic Embolization. Int. J. Biol. Macromol. 2015, 75, 479–488.
- 126 Seon, G. M.; Lee, M. H.; Kwon, B. J.; Kim, M. S.; Koo, M. A.; Kim, D.; Seomun, Y.; Kim, J. T.; Park, J. C. Functional Improvement of Hemostatic Dressing by Addition of Recombinant Batroxobin. Acta Biomater. 2017, 48, 175–185.
- 127 Shi, Y.; Ding, X.; Cao, Y.; Zhou, H.; Yu, W.; Liu, M.; Yin, J.; Liu, H.; Wang, J.; Huang, C.; Gong, C.; Wei, H.; Zhao, G. Preparation and Application of Quick Hemostatic Gauze Based on Biomimetic Mineralized Thrombin. Biomater. Sci. 2021, 9, 6098–6107.
- 128 Ziv-Polat, O.; Topaz, M.; Brosh, T.; Margel, S. Enhancement of Incisional Wound Healing by Thrombin Conjugated Iron Oxide Nanoparticles. Biomaterials 2010, 31, 741–747.
- 129 Moore, G. W. Snake Venoms in Diagnostic Hemostasis and Thrombosis. Semin. Thromb. Hemost. 2022, 48, 145–160.
- 130 Castro, H. C.; Rodrigues, C. R. Current Status of Snake Venom Thrombin-Like Enzymes. Toxin Rev. 2006, 25, 291–318.
- 131 Waheed, H.; Moin, F. S.; Choudhary, I. M. Snake Venom: From Deadly Toxins to Life-Saving Therapeutics. Curr. Med. Chem. 2017, 24, 1874–1891.
- 132 Yegappan, R.; Lauko, J.; Wang, Z.; Lavin, M. F.; Kijas, A. W.; Rowan, A. E. Snake Venom Hydrogels as a Rapid Hemostatic Agent for Uncontrolled Bleeding. Adv. Healthc. Mater. 2022, 11, 2200574.
- 133 Estevão-Costa, M.-I.; Sanz-Soler, R.; Johanningmeier, B.; Eble, J. A. Snake Venom Components in Medicine: From the Symbolic Rod of Asclepius to Tangible Medical Research and Application. Int. J. Biochem. Cell Biol. 2018, 104, 94–113.
- 134 Mohamed Abd El-Aziz, T.; Soares, A. G.; Stockand, J. D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins 2019, 11, 564.
- 135 Gupta, S.; Jangra, R. S.; Gupta, S. S.; Gakhar, A. Topical Hemocoagulase: A Novel Method for Achieving Hemostasis. J. Am. Acad. Dermatol. 2020, 82, e81–e82.
- 136 Shenoy, K. V.; Baliga, M.; Mahajan, S.; K, V. R. The Effects of Topical Hemocoagulase Solution on the Healing Process of Post-Extraction Wounds: A Split Mouth Design. J. Maxillofac. Oral Surg. 2015, 14, 586–593.
- 137 Joshi, S. A.; Gadre, K. S.; Halli, R.; Shandilya, R. Topical Use of Hemocoagulase (Reptilase): A Simple and Effective Way of Managing Post-Extraction Bleeding. Ann. Maxillofac. Surg. 2014, 4, 119.
- 138 Wang, T.; Wang, D. N.; Liu, W. T.; Zheng, Z. Q.; Chen, X.; Fang, W. L.; Li, S.; Liang, L.; Wang, B. M. Hemostatic Effect of Topical Hemocoagulase Spray in Digestive Endoscopy. World J. Gastroenterol. 2016, 22, 5831–5836.
- 139 Torigoe, K.; Yamashita, A.; Abe, S.; Muta, K.; Mukae, H.; Nishino, T. Effect of Hemocoagulase on the Prevention of Bleeding after Percutaneous Renal Biopsy. Toxins 2022, 14, 223.
- 140 Shi, Y.; Zhao, J.; Tang, S.; Pan, F.; Liu, L.; Tian, Z.; Li, H. Effect of Hemocoagulase for Prevention of Pulmonary Hemorrhage in Critical Newborns on Mechanical Ventilation: A Randomized Controlled Trial. Indian Pediatr. 2008, 45, 199–202.
- 141 Funk, C.; Gmür, J.; Herold, R.; Straub, P. W. Reptilase®-R—a New Reagent in Blood Coagulation. Br. J. Haematol. 1971, 21, 43–52.
- 142 Janszky, B. Action of the Venom of Bothrops Atrox on Fibrinogen. Science 1949, 110, 307–307.
- 143 Kumar, V. A.; Wickremasinghe, N. C.; Shi, S.; Hartgerink, J. D. Nanofibrous Snake Venom Hemostat. ACS Biomater. Sci. Eng. 2015, 1, 1300–1305.
- 144 Guo, Y.; Wang, Y.; Zhao, X.; Li, X.; Wang, Q.; Zhong, W.; Mequanint, K.; Zhan, R.; Xing, M.; Luo, G. Snake Extract-Laden Hemostatic Bioadhesive Gel Cross-Linked by Visible Light. Sci. Adv. 2021, 7, eabf9635.
- 145 Zhao, K.-N.; Masci, P.; Dimeski, G.; Johnson, L.; Grant, M.; de Jersey, J.; Lavin, M. F. Potential Application of Recombinant Snake Prothrombin Activator Ecarin in Blood Diagnostics. Biomolecules 2022, 12, 1704.
- 146 Nowak, G. The Ecarin Clotting Time, a Universal Method to Quantify Direct Thrombin Inhibitors. Pathophysiol. Haemost. Thromb. 2003, 33, 173–183.
- 147 Lange, U.; Nowak, G.; Bucha, E. Ecarin Chromogenic Assay – a New Method for Quantitative Determination of Direct Thrombin Inhibitors Like Hirudin. Pathophysiol. Haemost. Thromb. 2003, 33, 184–191.
- 148 Earl, S. T. H.; Masci, P. P.; de Jersey, J.; Lavin, M. F.; Dixon, J. Drug Development from Australian Elapid Snake Venoms and the Venomics Pipeline of Candidates for Haemostasis: Textilinin-1 (Q8008), Haempatch™ (Q8009) and Covase™ (V0801). Toxicon 2012, 59, 456–463.
- 149 Flight, S.; Johnson, L.; Trabi, M.; Gaffney, P.; Lavin, M.; de Jersey, J.; Masci, P. Comparison of Textilinin-1 with Aprotinin as Serine Protease Inhibitors and as Antifibrinolytic Agents. Pathophysiol. Haemost. Thromb. 2005, 34, 188–193.
- 150 Xu, H.-G.; Liang, Q.-L.; Li, L.; Qi, G.-F.; Wang, L.; Zhan, L.-N.; Ding, M.-R.; Zhang, K.; Cui, X. Biomimetic Peptide Nanoparticles Participate in Natural Coagulation for Hemostasis and Wound Healing. Biomater. Sci. 2022, 10, 2628–2637.
- 151 Roullet, S.; Luc, N.; Rayes, J.; Solarz, J.; Disharoon, D.; Ditto, A.; Gahagan, E.; Pawlowski, C.; Sefiane, T.; Adam, F.; Casari, C.; Christophe, O. D.; Bruckman, M.; Lenting, P. J.; Sen Gupta, A.; Denis, C. V. Efficacy of Platelet-Inspired Hemostatic Nanoparticles on Bleeding in Von Willebrand Disease Murine Models. Blood 2023, 141, 2891–2900.
- 152 Sekhon, U. D. S.; Swingle, K.; Girish, A.; Luc, N.; de la Fuente, M.; Alvikas, J.; Haldeman, S.; Hassoune, A.; Shah, K.; Kim, Y.; Eppell, S.; Capadona, J.; Shoffstall, A.; Neal, M. D.; Li, W.; Nieman, M.; Sen Gupta, A. Platelet-Mimicking Procoagulant Nanoparticles Augment Hemostasis in Animal Models of Bleeding. Sci. Transl. Med. 2022, 14, eabb8975.
- 153 Gao, Y.; Sarode, A.; Kokoroskos, N.; Ukidve, A.; Zhao, Z.; Guo, S.; Flaumenhaft, R.; Gupta, A. S.; Saillant, N.; Mitragotri, S. A Polymer-Based Systemic Hemostatic Agent. Sci. Adv. 2020, 6, eaba0588.
- 154 Modery-Pawlowski, C. L.; Tian, L. L.; Ravikumar, M.; Wong, T. L.; Sen Gupta, A. In vitro and in vivo Hemostatic Capabilities of a Functionally Integrated Platelet-Mimetic Liposomal Nanoconstruct. Biomaterials. 2013, 34, 3031–3041.
- 155 Haji-Valizadeh, H.; Modery-Pawlowski, C. L.; Sen Gupta, A. A Factor VIII-Derived Peptide Enables Von Willebrand Factor (Vwf)-Binding of Artificial Platelet Nanoconstructs without Interfering with Vwf-Adhesion of Natural Platelets. Nanoscale 2014, 6, 4765–4773.
- 156 Ding, Y. F.; Huang, Q.; Quan, X.; Cheng, Q.; Li, S.; Zhao, Y.; Mok, G. S. P.; Wang, R. Supramolecularly Functionalized Platelets for Rapid Control of Hemorrhage. Acta Biomater. 2022, 149, 248–257.
- 157 Gerszten, R. E.; Chen, J.; Ishii, M.; Ishii, K.; Wang, L.; Nanevicz, T.; Turck, C. W.; Vu, T. K.; Coughlin, S. R. Specificity of the Thrombin Receptor for Agonist Peptide Is Defined by Its Extracellular Surface. Nature 1994, 368, 648–651.
- 158 Qin, X.-H.; Labuda, K.; Chen, J.; Hruschka, V.; Khadem, A.; Liska, R.; Redl, H.; Slezak, P. Development of Synthetic Platelet-Activating Hydrogel Matrices to Induce Local Hemostasis. Adv. Funct. Mater. 2015, 25, 6606–6617.
- 159 Yang, X.; Liu, W.; Shi, Y.; Xi, G.; Wang, M.; Liang, B.; Feng, Y.; Ren, X.; Shi, C. Peptide-Immobilized Starch/Peg Sponge with Rapid Shape Recovery and Dual-Function for Both Uncontrolled and Noncompressible Hemorrhage. Acta Biomater. 2019, 99, 220–235.
- 160 Chan, L. W.; White, N. J.; Pun, S. H. A Fibrin Cross-Linking Polymer Enhances Clot Formation Similar to Factor Concentrates and Tranexamic Acid in an in vitro Model of Coagulopathy. ACS Biomater. Sci. Eng. 2016, 2, 403–408.
- 161 Chan, L. W.; Wang, X.; Wei, H.; Pozzo, L. D.; White, N. J.; Pun, S. H. A Synthetic Fibrin Cross-Linking Polymer for Modulating Clot Properties and Inducing Hemostasis. Sci. Transl. Med. 2015, 7, 277ra229.
- 162 Lamm, R. J.; Lim, E. B.; Weigandt, K. M.; Pozzo, L. D.; White, N. J.; Pun, S. H. Peptide Valency Plays an Important Role in the Activity of a Synthetic Fibrin-Crosslinking Polymer. Biomaterials 2017, 132, 96–104.
- 163 Chen, C.; Zhang, Y.; Fei, R.; Cao, C.; Wang, M.; Wang, J.; Bai, J.; Cox, H.; Waigh, T.; Lu, J. R.; Xu, H. Hydrogelation of the Short Self-Assembling Peptide I3qgk Regulated by Transglutaminase and Use for Rapid Hemostasis. ACS Appl. Mater. Interfaces 2016, 8, 17833–17841.
- 164 Wu, J.; Lemarie, C. A.; Barralet, J.; Blostein, M. D. Amphiphilic Peptide-Loaded Nanofibrous Calcium Phosphate Microspheres Promote Hemostasis in vivo. Acta Biomater. 2013, 9, 9194–9200.
- 165 Yan, J.; Wang, Y.; Li, X.; Guo, D.; Zhou, Z.; Bai, G.; Li, J.; Huang, N.; Diao, J.; Li, Y.; He, W.; Liu, W.; Tao, K. A Bionic Nano-Band-Aid Constructed by the Three-Stage Self-Assembly of Peptides for Rapid Liver Hemostasis. Nano Lett. 2021, 21, 7166–7174.
- 166 Chan, K. Y.; Zhao, C.; Siren, E. M.; Chan, J. C.; Boschman, J.; Kastrup, C. J. Adhesion of Blood Clots Can Be Enhanced When Copolymerized with a Macromer That Is Crosslinked by Coagulation Factor XIIIa. Biomacromolecules 2016, 17, 2248–2252.
- 167 Zhou, J.; Zhang, H.; Fareed, M. S.; He, Y.; Lu, Y.; Yang, C.; Wang, Z.; Su, J.; Wang, P.; Yan, W.; Wang, K. An Injectable Peptide Hydrogel Constructed of Natural Antimicrobial Peptide J-1 and Adp Shows Anti-Infection, Hemostasis, and Antiadhesion Efficacy. ACS Nano 2022, 16, 7636–7650.
- 168 Liu, Y.; Niu, H.; Wang, C.; Yang, X.; Li, W.; Zhang, Y.; Ma, X.; Xu, Y.; Zheng, P.; Wang, J.; Dai, K. Bio-Inspired, Bio-Degradable Adenosine 5’-Diphosphate-Modified Hyaluronic Acid Coordinated Hydrophobic Undecanal-Modified Chitosan for Hemostasis and Wound Healing. Bioact. Mater. 2022, 17, 162–177.
- 169 Morrissey, J. H. Polyphosphate: A Link between Platelets, Coagulation and Inflammation. Int. J. Hematol. 2012, 95, 346–352.
- 170 Smith, S. A.; Choi, S. H.; Davis-Harrison, R.; Huyck, J.; Boettcher, J.; Rienstra, C. M.; Morrissey, J. H. Polyphosphate Exerts Differential Effects on Blood Clotting, Depending on Polymer Size. Blood 2010, 116, 4353–4359.
- 171 Lovas, M.; Tanka-Salamon, A.; Beinrohr, L.; Voszka, I.; Szabo, L.; Molnar, K.; Kolev, K. Polyphosphate Nanoparticles Enhance the Fibrin Stabilization by Histones More Efficiently Than Linear Polyphosphates. PLoS One 2022, 17, e0266782.
- 172 Kudela, D.; Smith, S. A.; May-Masnou, A.; Braun, G. B.; Pallaoro, A.; Nguyen, C. K.; Chuong, T. T.; Nownes, S.; Allen, R.; Parker, N. R.; Rashidi, H. H.; Morrissey, J. H.; Stucky, G. D. Clotting Activity of Polyphosphate-Functionalized Silica Nanoparticles. Angew. Chem. Int. Ed. 2015, 54, 4018–4022.
- 173 Faxalv, L.; Boknas, N.; Strom, J. O.; Tengvall, P.; Theodorsson, E.; Ramstrom, S.; Lindahl, T. L. Putting Polyphosphates to the Test: Evidence against Platelet-Induced Activation of Factor XII. Blood 2013, 122, 3818–3824.
- 174 Wang, Y.; Kim, K.; Lee, M. S.; Lee, H. Hemostatic Ability of Chitosan-Phosphate Inspired by Coagulation Mechanisms of Platelet Polyphosphates. Macromol. Biosci. 2018, 18, e1700378.
- 175 Ong, S. Y.; Wu, J.; Moochhala, S. M.; Tan, M. H.; Lu, J. Development of a Chitosan-Based Wound Dressing with Improved Hemostatic and Antimicrobial Properties. Biomaterials 2008, 29, 4323–4332.
- 176 Cao, C.; Yang, N.; Zhao, Y.; Yang, D.; Hu, Y.; Yang, D.; Song, X.; Wang, W.; Dong, X. Biodegradable Hydrogel with Thermo-Response and Hemostatic Effect for Photothermal Enhanced Anti-Infective Therapy. Nano Today 2021, 39, 101165.
- 177Gu, J.-t.; Jiao, K.; Li, J.; Yan, J.-f.; Wang, K.-y.; Wang, F.; Liu, Y.; Tay, F. R.; Chen, J.-h.; Niu, L.-n. Polyphosphate-Crosslinked Collagen Scaffolds for Hemostasis and Alveolar Bone Regeneration after Tooth Extraction. Bioact. Mater. 2022, 15, 68–81.
- 178 Chang, L.; Chang, R.; Liu, X.; Ma, X.; Chen, D.; Wang, Y.; Li, W.; Qin, J. Self-Healing Hydrogel Based on Polyphosphate-Conjugated Pectin with Hemostatic Property for Wound Healing Applications. Biomater. Adv. 2022, 139, 212974.
- 179 Chen, D.; Liu, X.; Qi, Y.; Ma, X.; Wang, Y.; Song, H.; Zhao, Y.; Li, W.; Qin, J. Poly(Aspartic Acid) Based Self-Healing Hydrogel with Blood Coagulation Characteristic for Rapid Hemostasis and Wound Healing Applications. Colloid Surf. B-Biointerfaces 2022, 214, 112430.
- 180 Nilsson, B.; Back, V.; Wei, R.; Plane, F.; Jurasz, P.; Bungard, T. J. Potential Antimigraine Effects of Warfarin: An Exploration of Biological Mechanism with Survey of Patients. TH Open 2019, 3, e180–e189.
- 181 Tasaki, K.; Hori, M.; Ozaki, H.; Karaki, H.; Wakabayashi, I. Difference in Signal Transduction Mechanisms Involved in 5-Hydroxytryptamine- and U46619-Induced Vasoconstrictions. J. Smooth Muscle Res. 2003, 39, 107–117.
- 182 Mindukshev, I.; Fock, E.; Dobrylko, I.; Sudnitsyna, J.; Gambaryan, S.; Panteleev, M. A. Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration. Int. J. Mol. Sci. 2022, 23, 10667.
- 183 Moers, A.; Nieswandt, B.; Massberg, S.; Wettschureck, N.; Gruner, S.; Konrad, I.; Schulte, V.; Aktas, B.; Gratacap, M. P.; Simon, M. I.; Gawaz, M.; Offermanns, S. G(13) Is an Essential Mediator of Platelet Activation in Hemostasis and Thrombosis. Nat. Med. 2003, 9, 1418–1422.
- 184 Varga-Szabo, D.; Pleines, I.; Nieswandt, B. Cell Adhesion Mechanisms in Platelets. Atertio. Thromb. Vasc. Biol. 2008, 28, 403–412.
- 185 Gale, A. J. Continuing Education Course #2: Current Understanding of Hemostasis. Toxicol. Pathol. 2011, 39, 273–280.
- 186 Roberts, H. R.; Hoffman, M.; Monroe, D. M. A Cell-Based Model of Thrombin Generation. Semin. Thromb. Hemost. 2006, 32, 032–038.
- 187 Ahmed, M. U.; Receveur, N.; Janus-Bell, E.; Mouriaux, C.; Gachet, C.; Jandrot-Perrus, M.; Hechler, B.; Gardiner, E. E.; Mangin, P. H. Respective Roles of Glycoprotein VI and FcgammarIIa in the Regulation of AlphaIIbbeta3-Mediated Platelet Activation to Fibrinogen, Thrombus Buildup, and Stability. Res. Pract. Thromb. Haemost. 2021, 5, e12551.
- 188 Cines, D. B.; Yarovoi, S. V.; Zaitsev, S. V.; Lebedeva, T.; Rauova, L.; Poncz, M.; Arepally, G. M.; Khandelwal, S.; Stepanova, V.; Rux, A. H.; Cuker, A.; Guo, C.; Ocariza, L. M.; Travers, R. J.; Smith, S. A.; Kim, H.; Morrissey, J. H.; Conway, E. M. Polyphosphate/Platelet Factor 4 Complexes Can Mediate Heparin-Independent Platelet Activation in Heparin-Induced Thrombocytopenia. Blood Adv. 2016, 1, 62–74.
- 189 Bender, M.; Palankar, R. Platelet Shape Changes During Thrombus Formation: Role of Actin-Based Protrusions. Hamostaseologie 2021, 41, 14–21.
- 190
Hoemann, C. D.; Rivard, G. E. Chitosan-Platelet Interactions. In Chitosan for Biomaterials III: Structure-Property Relationships, Eds.: R. Jayakumar; M. Prabaharan, Springer, 2021, pp. 319–342.
10.1007/12_2021_86 Google Scholar
- 191 Kozen, B. G.; Kircher, S. J.; Henao, J.; Godinez, F. S.; Johnson, A. S. An Alternative Hemostatic Dressing: Comparison of Celox, Hemcon, and Quikclot. Acad. Emerg. Med. 2008, 15, 74–81.
- 192 Wei, X.; Ding, S.; Liu, S.; Yang, K.; Cai, J.; Li, F.; Wang, C.; Lin, S.; Tian, F. Polysaccharides-Modified Chitosan as Improved and Rapid Hemostasis Foam Sponges. Carbohydr. Polym. 2021, 264, 118028.
- 193 Patil, G.; Pawar, R.; Jadhav, S.; Ghormade, V. A Chitosan Based Multimodal "Soft" Hydrogel for Rapid Hemostasis of Non-Compressible Hemorrhages and Its Mode of Action. Carbohydr. Polym. Technol. Appl. 2022, 4, 100237.
- 194 Zhang, X.; Chen, G.; Cai, L.; Wang, Y.; Sun, L.; Zhao, Y. Bioinspired Pagoda-Like Microneedle Patches with Strong Fixation and Hemostasis Capabilities. Chem. Eng. J. 2021, 414, 128905.
- 195 Lei, Q.; Zhang, Y.; Zhang, W.; Li, R.; Ao, N.; Zhang, H. A Synergy between Dopamine and Electrostatically Bound Bactericide in a Poly (Vinyl Alcohol) Hybrid Hydrogel for Treating Infected Wounds. Carbohydr. Polym. 2021, 272, 118513.
- 196 Feng, C.-C.; Lu, W.-F.; Liu, Y.-C.; Liu, T.-H.; Chen, Y.-C.; Chien, H.-W.; Wei, Y.; Chang, H.-W.; Yu, J. A Hemostatic Keratin/Alginate Hydrogel Scaffold with Methylene Blue Mediated Antimicrobial Photodynamic Therapy. J. Mat. Chem. B 2022, 10, 4878–4888.
- 197 Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, P. X. Injectable Antibacterial Conductive Nanocomposite Cryogels with Rapid Shape Recovery for Noncompressible Hemorrhage and Wound Healing. Nat. Commun. 2018, 9, 2784.
- 198 Nandi, S.; Mihalko, E.; Nellenbach, K.; Castaneda, M.; Schneible, J.; Harp, M.; Deal, H.; Daniele, M.; Menegatti, S.; Barker, T. H.; Brown, A. C. Synthetic Platelet Microgels Containing Fibrin Knob B Mimetic Motifs Enhance Clotting Responses. Adv. Therap. 2021, 4, 2100010.
- 199 Prakash, S.; Thakur, A. Platelet Concentrates: Past, Present and Future. J. Maxillofac. Oral Surg. 2011, 10, 45–49.
- 200 Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review. Tissue Eng. Part B-Rev. 2017, 23, 83–99.
- 201 Marx, R. E. Platelet-Rich Plasma (PRP): What Is Prp and What Is Not PRP? Implant Dent. 2001, 10, 225–228.
- 202 Albanese, A.; Licata, M. E.; Polizzi, B.; Campisi, G. Platelet-Rich Plasma (PRP) in Dental and Oral Surgery: From the Wound Healing to Bone Regeneration. Immun. Ageing 2013, 10, 23.
- 203 Anitua, E.; Nurden, P.; Prado, R.; Nurden, A. T.; Padilla, S. Autologous Fibrin Scaffolds: When Platelet- and Plasma-Derived Biomolecules Meet Fibrin. Biomaterials 2019, 192, 440–460.
- 204 Eskildsen, M. P. R.; Kalliokoski, O.; Boennelycke, M.; Lundquist, R.; Settnes, A.; Loekkegaard, E. An Autologous Blood-Derived Patch as a Hemostatic Agent: Evidence from Thromboelastography Experiments and a Porcine Liver Punch Biopsy Model. J. Mater. Sci. Mater. Med. 2023, 34, 20.
- 205 Verma, R.; Kumar, S.; Garg, P.; Verma, Y. K. Platelet-Rich Plasma: A Comparative and Economical Therapy for Wound Healing and Tissue Regeneration. Cell Tissue Banking 2023, 24, 285–306.
- 206 Man, D.; Plosker, H.; Winland-Brown, J. E. The Use of Autologous Platelet-Rich Plasma (Platelet Gel) and Autologous Platelet-Poor Plasma (Fibrin Glue) in Cosmetic Surgery. Plast. Reconstr. Surg. 2001, 107, 229–236.
- 207 Giannini, G.; Mauro, V.; Agostino, T.; Gianfranco, B. Use of Autologous Fibrin-Platelet Glue and Bone Fragments in Maxillofacial Surgery. Transfusion Apheresis Sci. 2004, 30, 139–144.
- 208 Jiang, Y.; Wang, J.; Zhang, H.; Chen, G.; Zhao, Y. Bio-Inspired Natural Platelet Hydrogels for Wound Healing. Sci. Bull. 2022, 67, 1776–1784.
- 209 Wei, S.; Xu, P.; Yao, Z.; Cui, X.; Lei, X.; Li, L.; Dong, Y.; Zhu, W.; Guo, R.; Cheng, B. A Composite Hydrogel with Co-Delivery of Antimicrobial Peptides and Platelet-Rich Plasma to Enhance Healing of Infected Wounds in Diabetes. Acta Biomater. 2021, 124, 205–218.
- 210 Sambasivan, C. N.; Cho, S. D.; Zink, K. A.; Differding, J. A.; Schreiber, M. A. A Highly Porous Silica and Chitosan-Based Hemostatic Dressing Is Superior in Controlling Hemorrhage in a Severe Groin Injury Model in Swine. Am. J. Surg. 2009, 197, 576–580.
- 211 Tong, Z.; Gao, Y.; Yang, H.; Wang, W.; Mao, Z. Nanomaterials for Cascade Promoted Catalytic Cancer Therapy. View 2021, 2, 20200133.
- 212 Shi, Z.; Shi, C.; Liu, C.; Sun, H.; Ai, S.; Liu, X.; Wang, H.; Gan, Y.; Dai, H.; Wang, X.; Huang, F. Incorporation of Tissue Factor-Integrated Liposome and Silica Nanoparticle into Collagen Hydrogel as a Promising Hemostatic System. J. Biomater. Sci. Polym. Ed. 2023, 34, 1090–1100.
- 213 Liu, C.; Yao, W.; Tian, M.; Wei, J.; Song, Q.; Qiao, W. Mussel-Inspired Degradable Antibacterial Polydopamine/Silica Nanoparticle for Rapid Hemostasis. Biomaterials 2018, 179, 83–95.
- 214 Nie, W.; Dai, X.; Li, D.; McCoul, D.; Gillispie, G. J.; Zhang, Y.; Yu, B.; He, C. One-Pot Synthesis of Silver Nanoparticle Incorporated Mesoporous Silica Granules for Hemorrhage Control and Antibacterial Treatment. ACS Biomater. Sci. Eng. 2018, 4, 3588–3599.
- 215 Cherng, J. H.; Lin, C. J.; Liu, C. C.; Yeh, J. Z.; Fan, G. Y.; Tsai, H. D.; Chung, C. F.; Hsu, S. D. Hemostasis and Anti-Inflammatory Abilities of Aunps-Coated Chitosan Dressing for Burn Wounds. J. Pers. Med. 2022, 12, 1089.
- 216 Zu, Y.; Wang, Y.; Yao, H.; Yan, L.; Yin, W.; Gu, Z. A Copper Peroxide Fenton Nanoagent-Hydrogel as an in Situ Ph-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS Appl. Bio Mater. 2022, 5, 1779–1793.
- 217 Chen, L.; Qin, Y.; Cheng, J.; Cheng, Y.; Lu, Z.; Liu, X.; Yang, S.; Lu, S.; Zheng, L.; Cao, Q. A Biocompatible PAA-Cu-Mop Hydrogel for Wound Healing. RSC Adv. 2020, 10, 36212–36218.
- 218 Muthiah Pillai, N. S.; Eswar, K.; Amirthalingam, S.; Mony, U.; Kerala Varma, P.; Jayakumar, R. Injectable Nano Whitlockite Incorporated Chitosan Hydrogel for Effective Hemostasis. ACS Appl. Bio Mater. 2019, 2, 865–873.
- 219 Hickman, D. A.; Pawlowski, C. L.; Sekhon, U. D. S.; Marks, J.; Gupta, A. S. Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Adv. Mater. 2018, 30, 1700859.
- 220 Shang, X.; Chen, H.; Castagnola, V.; Liu, K.; Boselli, L.; Petseva, V.; Yu, L.; Xiao, L.; He, M.; Wang, F.; Dawson, K. A.; Fan, J. Unusual Zymogen Activation Patterns in the Protein Corona of Ca-Zeolites. Nat. Catal. 2021, 4, 607–614.
- 221 Voelker, R. From Soldiers to Civilians. JAMA 2016, 315, 456.
- 222 Neuffer, M. C.; McDivitt, J.; Rose, D.; King, K.; Cloonan, C. C.; Vayer, J. S. Hemostatic Dressings for the First Responder: A Review. Mil. Med. 2004, 169, 716–720.
- 223 Yu, L.; Shang, X.; Chen, H.; Xiao, L.; Zhu, Y.; Fan, J. A Tightly-Bonded and Flexible Mesoporous Zeolite-Cotton Hybrid Hemostat. Nat. Commun. 2019, 10, 1932.
- 224 Yu, L.; Zhang, H.; Xiao, L.; Fan, J.; Li, T. A Bio-Inorganic Hybrid Hemostatic Gauze for Effective Control of Fatal Emergency Hemorrhage in "Platinum Ten Minutes". ACS Appl. Mater. Interfaces 2022, 14, 21814–21821.
- 225 Yu, L.; Yu, B.; Chen, H.; Shang, X.; He, M.; Lin, M.; Li, D.; Zhang, W.; Kang, Z.; Li, J.; Wang, F.; Xiao, L.; Wang, Q.; Fan, J. Highly Efficient Artificial Blood Coagulation Shortcut Confined on Ca-Zeolite Surface. Nano Res. 2021, 14, 3309–3318.
- 226 Yang, X.; Liu, W.; Li, N.; Wang, M.; Liang, B.; Ullah, I.; Luis Neve, A.; Feng, Y.; Chen, H.; Shi, C. Design and Development of Polysaccharide Hemostatic Materials and Their Hemostatic Mechanism. Biomater. Sci. 2017, 5, 2357–2368.
- 227 Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, P. X. Injectable Antibacterial Conductive Nanocomposite Cryogels with Rapid Shape Recovery for Noncompressible Hemorrhage and Wound Healing. Nat. Commun. 2018, 9, 2784.
- 228 Peng, X.; Xu, X.; Deng, Y.; Xie, X.; Xu, L.; Xu, X.; Yuan, W.; Yang, B.; Yang, X.; Xia, X.; Duan, L.; Bian, L. Ultrafast Self-Gelling and Wet Adhesive Powder for Acute Hemostasis and Wound Healing. Adv. Funct. Mater. 2021, 31, 2102583.
- 229 Yang, D.; Kumar, V. Preparation and Characterization of Novel Oxidized Cellulose Acetate Methyl Esters. Carbohydr. Polym. 2012, 90, 1486–1493.
- 230 Xu, Z.; Tian, W.; Wen, C.; Ji, X.; Diao, H.; Hou, Y.; Fan, J.; Liu, Z.; Ji, T.; Sun, F.; Wu, D.; Zhang, J. Cellulose-Based Cryogel Microspheres with Nanoporous and Controllable Wrinkled Morphologies for Rapid Hemostasis. Nano Lett. 2022, 22, 6350–6358.
- 231 Wei, X.; Ding, S.; Liu, S.; Yang, K.; Cai, J.; Li, F.; Wang, C.; Lin, S.; Tian, F. Polysaccharides-Modified Chitosan as Improved and Rapid Hemostasis Foam Sponges. Carbohydr. Polym. 2021, 264, 118028.
- 232 Bjorses, K.; Faxalv, L.; Montan, C.; Wildt-Persson, K.; Fyhr, P.; Holst, J.; Lindahl, T. L. In vitro and in vivo Evaluation of Chemically Modified Degradable Starch Microspheres for Topical Haemostasis. Acta Biomater. 2011, 7, 2558–2565.
- 233 Yang, Y.; Wei, X.; Sun, P.; Wan, J. Preparation, Characterization and Adsorption Performance of a Novel Anionic Starch Microsphere. Molecules 2010, 15, 2872–2885.
- 234 Giri Dev, V. R.; Hemamalini, T. Porous Electrospun Starch Rich Polycaprolactone Blend Nanofibers for Severe Hemorrhage. Int. J. Biol. Macromol. 2018, 118, 1276–1283.
- 235 Wang, C.; Luo, W.; Li, P.; Li, S.; Yang, Z.; Hu, Z.; Liu, Y.; Ao, N. Preparation and Evaluation of Chitosan/Alginate Porous Microspheres/ Bletilla Striata Polysaccharide Composite Hemostatic Sponges. Carbohydr. Polym. 2017, 174, 432–442.
- 236 Liu, W.; Yang, X.; Li, P.; Sang, F.; Cao, L.; Zhang, B.; Meng, Z.; Ma, Z.; Shi, C. Thrombin Embedded in Emps@Thr/Sponge with Enhanced Procoagulant Ability for Uncompressible and Massive Hemorrhage Control. ACS Appl. Bio. Mater. 2021, 4, 7643–7652.
- 237 Zhang, L.; Sun, Y.; Peng, L.; Fang, W.; Huang, Q.; Zhang, J.; Zhang, Z.; Li, H.; Liu, Y.; Ying, Y.; Fu, Y. Blood-Coagulation-Inspired Dynamic Bridging Strategy for the Fabrication of Multiscale-Assembled Hierarchical Porous Material. Adv. Sci. 2023, 10, e2204702.
- 238 Wang, C.; Wang, X.; Zhang, W.; Ma, D.; Li, F.; Jia, R.; Shi, M.; Wang, Y.; Ma, G.; Wei, W. Shielding Ferritin with a Biomineralized Shell Enables Efficient Modulation of Tumor Microenvironment and Targeted Delivery of Diverse Therapeutic Agents. Adv. Mater. 2022, 34, e2107150.
- 239 Yao, S.; Jin, B.; Liu, Z.; Shao, C.; Zhao, R.; Wang, X.; Tang, R. Biomineralization: From Material Tactics to Biological Strategy. Adv. Mater. 2017, 29, 1605903.
- 240 Ustok, F. I.; Huntington, J. A. Mapping the Prothrombin-Binding Site of Pseutarin C by Site-Directed Pegylation. Blood 2022, 139, 2972–2982.