Graphene Nanoribbons from Tetraphenylethene-Based Polymeric Precursor: Chemical Synthesis and Application in Thin-Film Field-Effect Transistor
Ji Ma
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Search for more papers by this authorHaoyun Zhu
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Search for more papers by this authorWei Huang
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Search for more papers by this authorTingting Lin
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
Search for more papers by this authorXiaoyong Pan
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
Search for more papers by this authorCorresponding Author
Weizhi Wang
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China, Tel.: 0086-021-65643836Search for more papers by this authorJi Ma
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Search for more papers by this authorHaoyun Zhu
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Search for more papers by this authorWei Huang
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Search for more papers by this authorTingting Lin
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
Search for more papers by this authorXiaoyong Pan
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
Search for more papers by this authorCorresponding Author
Weizhi Wang
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China, Tel.: 0086-021-65643836Search for more papers by this authorAbstract
Graphene nanoribbons (GNRs) with a non-zero bandgap are regarded as a promising candidate for the fabrication of electronic devices. In this study, large-scale solution synthesis of narrow GNRs was firstly achieved by the intramolecular cyclodehydrogenation of kinked tetraphenylethene (TPE) polymer precursors prepared by A2B2-type Suzuki-Miyaura polymerization. After the cyclization reaction, the nanoribbons have a better conjugation than the twisted polymer precursor, resulting in obvious red shift in UV/vis absorption and photoluminescence (PL) spectra. The efficient formation of conjugated nanoribbons was also investigated by Raman, FTIR spectroscopy, and microscopic studies. Furthermore, such structurally well-defined GNRs have been successfully developed for top-gated field-effect transistor (FET) by directly solution processing. The AFM images show that the prepared-GNRs thin films form crystalline fibrillar intercalating networks, which can effectively facilitate the charge transport. These FET devices with ion-gel gate dielectrics exhibit low-voltage operation (<5 V) with excellent mobility up to 0.41 cm2·V−1·s−1 and an on-off ratio of 3×104, thus opening up new opportunities for flexible GNRs-based electronic devices.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201500672_sm_suppl.pdf529.6 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Barone, V.; Hod, O.; Scuseria, G. E.. Nano Lett., 2006, 6, 2748.
- 2 Yazyev, O. V.. Acc. Chem. Res., 2013, 46, 2319.
- 3 Ma, L.; Wang, J.; Ding, F.. ChemPhysChem, 2013, 14, 47.
- 4 Abbas, A. N.; Liu, G.; Narita, A.; Orosco, M.; Feng, X.; Müllen, K.; Zhou, C.. J. Am. Chem. Soc., 2014, 136, 7555.
- 5 Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P.. Phys. Rev. Lett., 2007, 98, 206805.
- 6 Bai, J.; Duan, X.; Huang, Y.. Nano Lett., 2009, 9, 2083.
- 7 Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H.. Science, 2008, 319, 1229.
- 8 Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H.. Phys. Rev. Lett., 2008, 100, 206803.
- 9 Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M.. Nature, 2009, 458, 872.
- 10 Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H.. Nature, 2009, 458, 877.
- 11 Sinitskii, A.; Fursina, A. A.; Kosynkin, D. V.; Higginbotham, A. L.; Natelson, D.; Tour, J. M.. Appl. Phys. Lett., 2009, 95, 253108.
- 12 Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H.. Nat. Nanotechnol., 2010, 5, 321.
- 13 Chuvilin, A.; Bichoutskaia, E.; Gimenez-Lopez, M. C.; Chamberlain, T. W.; Rance, G. A.; Kuganathan, N.; Biskupek, J.; Kaiser, U.; Khlobystov, A. N.. Nat. Mater., 2011, 10, 687.
- 14 Talyzin, A. V.; Anoshkin, I. V.; Krasheninnikov, A. V.; Nieminen, R. M.; Nasibulin, A. G.; Jiang, H.; Kauppinen, E. I.. Nano Lett., 2011, 11, 4352.
- 15 Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel, R.. Nature, 2010, 466, 470.
- 16 Bronner, C.; Stremlau, S.; Gille, M.; Brau?e, F.; Haase, A.; Hecht, S.; Tegeder, P.. Angew. Chem., Int. Ed., 2013, 52, 4422.
- 17 Chen, Y.-C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F.. ACS Nano, 2013, 7, 6123.
- 18 Sokolov, A. N.; Yap, F. L.; Liu, N.; Kim, K.; Ci, L.; Johnson, O. B.; Wang, H.; Vosgueritchian, M.; Koh, A. L.; Chen, J.; Park, J.; Bao, Z.. Nat. Commun., 2013, 4, 2402.
- 19 Martin-Fernandez, I.; Wang, D.; Zhang, Y.. Nano Lett., 2012, 12, 6175.
- 20 Kato, T.; Hatakeyama, R.. Nat. Nanotechnol., 2012, 7, 651.
- 21 Liu, N.; Kim, K.; Hsu, P.-C.; Sokolov, A. N.; Yap, F. L.; Yuan, H.; Xie, Y.; Yan, H.; Cui, Y.; Hwang, H. Y.; Bao, Z.. J. Am. Chem. Soc., 2014, 136, 17284.
- 22 Yang, X.; Dou, X.; Rouhanipour, A.; Zhi, L.; Räder, H. J.; Müllen, K.. J. Am. Chem. Soc., 2008, 130, 4216.
- 23 Dössel, L.; Gherghel, L.; Feng, X.; Müllen, K.. Angew. Chem., Int. Ed., 2011, 50, 2540.
- 24 Vo, T. H.; Shekhirev, M.; Kunkel, D. A.; Morton, M. D.; Berglund, E.; Kong, L.; Wilson, P. M.; Dowben, P. A.; Enders, A.; Sinitskii, A.. Nat. Commun., 2014, 5, 3189.
- 25 Schwab, M. G.; Narita, A.; Hernandez, Y.; Balandina, T.; Mali, K. S.; De Feyter, S.; Feng, X.; Müllen, K.. J. Am. Chem. Soc., 2012, 134, 18169.
- 26 Narita, A.; Feng, X.; Hernandez, Y.; Jensen, S. A.; Bonn, M.; Yang, H.; Verzhbitskiy, I. A.; Casiraghi, C.; Hansen, M. R.; Koch, A. H. R.; Fytas, G.; Ivasenko, O.; Li, B.; Mali, K. S.; Balandina, T.; Mahesh, S.; De Feyter, S.; Müllen, K.. Nat. Chem., 2014, 6, 126.
- 27 Wu, J.; Gherghel, L.; Watson, M. D.; Li, J.; Wang, Z.; Simpson, C. D.; Kolb, U.; Müllen, K.. Macromolecules, 2003, 36, 7082.
- 28 Fogel, Y.; Zhi, L.; Rouhanipour, A.; Andrienko, D.; Räder, H. J.; Müllen, K.. Macromolecules, 2009, 42, 6878.
- 29 Wang, W.; Lin, T.; Wang, M.; Liu, T.-X.; Ren, L.; Chen, D.; Huang, S.. J. Phys. Chem. B, 2010, 114, 5983.
- 30 Zhao, Z.; Lam, J. W. Y.; Tang, B. Z.. J. Mater. Chem., 2012, 22, 23726.
- 31 Ma, J.; Lin, T.; Pan, X.; Wang, W.. Chem. Mater., 2014, 26, 4221.
- 32 Huang, W.; Zhang, H.; Ma, J.; Chen, M.; Zhu, H.; Wang, W.. J. Mater. Chem. C, 2015, 3, 6200.
- 33 Centrone, A.; Brambilla, L.; Renouard, T.; Gherghel, L.; Mathis, C.; Müllen, K.; Zerbi, G.. Carbon, 2005, 43, 1593.
- 34 Villegas, C. E. P.; Mendon?a, P. B.; Rocha, A. R.. Sci. Rep., 2014, 4, 6579.
- 35 Han, M. Y.; Brant, J. C.; Kim, P.. Phys. Rev. Lett., 2010, 104, 056801.
- 36 Zhao, Z.; Li, Z.; Lam, J. W. Y.; Maldonado, J.; Gabriel, R. O.; Liu, Y.; Yuan, W.; Xu, J.; Miao, Q.; Tang, B. Z.. Chem. Commun., 2011, 47, 6924.
- 37 Zhao, Z. J.; Lam, J. W. Y.; Chan, C. Y. K.; Chen, S. M.; Liu, J. Z.; Lu, P.; Rodriguez, M.; Maldonado, J. L.; Ramos-Ortiz, G.; Sung, H. H. Y.; Williams, I. D.; Su, H. M.; Wong, K. S.; Ma, Y. G.; Kwok, H. S.; Qiu, H. Y.; Tang, B. Z.. Adv. Mater., 2011, 23, 5430.
- 38 Chen, L.; Wang, Y. H.; He, B. R.; Nie, H.; Hu, R. R.; Huang, F.; Qin, A. J.; Zhou, X. S.; Zhao, Z. J.; Tang, B. Z.. Angew. Chem., Int. Ed., 2015, 54, 4231.
- 39 Tarabella, G.; Mahvash Mohammadi, F.; Coppede, N.; Barbero, F.; Iannotta, S.; Santato, C.; Cicoira, F.. Chem. Sci., 2013, 4, 1395.
- 40 Fujimoto, T.; Awaga, K.. Phys. Chem. Chem. Phys., 2013, 15, 8983.
- 41 Farmer, D. B.; Chiu, H.-Y.; Lin, Y.-M.; Jenkins, K. A.; Xia, F.; Avouris, P.. Nano Lett., 2009, 9, 4474.
- 42 Liao, L.; Bai, J.; Lin, Y.-C.; Qu, Y.; Huang, Y.; Duan, X.. Adv. Mater., 2010, 22, 1941.
- 43 Lei, T.; Cao, Y.; Fan, Y.; Liu, C.-J.; Yuan, S.-C.; Pei, J.. J. Am. Chem. Soc., 2011, 133, 6099.
- 44 Hu, Y.; Wang, Z.; Zhang, X.; Yang, X.; Li, H.; Gao, X.. Chin. J. Chem., 2013, 31, 1428.
- 45 Cai, Z.; Liu, Z.; Luo, H.; Qi, P.; Zhang, G.; Zhang, D.. Chin. J. Chem., 2014, 32, 788.
- 46 Cho, J. H.; Lee, J.; Xia, Y.; Kim, B.; He, Y.; Renn, M. J.; Lodge, T. P.; Frisbie, C. D.. Nat. Mater., 2008, 7, 900.
- 47 Kim, B. J.; Jang, H.; Lee, S.-K.; Hong, B. H.; Ahn, J.-H.; Cho, J. H.. Nano Lett., 2010, 10, 3464.
- 48 Kaji, Y.; Ogawa, K.; Eguchi, R.; Goto, H.; Sugawara, Y.; Kambe, T.; Akaike, K.; Gohda, S.; Fujiwara, A.; Kubozono, Y.. Org. Electron., 2011, 12, 2076.
- 49 Kim, K. T.; Jung, J. W.; Jo, W. H.. Carbon, 2013, 63, 202.
- 50 Gemayel, M. E.; Narita, A.; Dossel, L. F.; Sundaram, R. S.; Kiersnowski, A.; Pisula, W.; Hansen, M. R.; Ferrari, A. C.; Orgiu, E.; Feng, X.; Mullen, K.; Samori, P.. Nanoscale, 2014, 6, 6301.