Behaviors of Leucine and Isoleucine in Ion Mobility-Quadrupole Time of Flight Mass Spectrometry
Su Guo
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
Search for more papers by this authorCorresponding Author
Fang Zhang
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, Tel.: 0086-021-54925300Search for more papers by this authorHaoyang Wang
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
Search for more papers by this authorManyu Zhang
Agilent Technologies (China) CO., Ltd., 1350 North Sichuan Road, Shanghai 200080, China
Search for more papers by this authorZhixu Zhang
Agilent Technologies (China) CO., Ltd., 1350 North Sichuan Road, Shanghai 200080, China
Search for more papers by this authorXiang Zhang
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
Search for more papers by this authorCorresponding Author
Yinlong Guo
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, Tel.: 0086-021-54925300Search for more papers by this authorSu Guo
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
Search for more papers by this authorCorresponding Author
Fang Zhang
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, Tel.: 0086-021-54925300Search for more papers by this authorHaoyang Wang
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
Search for more papers by this authorManyu Zhang
Agilent Technologies (China) CO., Ltd., 1350 North Sichuan Road, Shanghai 200080, China
Search for more papers by this authorZhixu Zhang
Agilent Technologies (China) CO., Ltd., 1350 North Sichuan Road, Shanghai 200080, China
Search for more papers by this authorXiang Zhang
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
Search for more papers by this authorCorresponding Author
Yinlong Guo
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, Tel.: 0086-021-54925300Search for more papers by this authorAbstract
In this study, ion mobility separation coupled with tandem mass spectrometry (IM-tandem MS) was utilized to investigate the ionization behaviors of two amino acids including leucine and isoleucine. Under the electrospray ionization (ESI) mode, two protonation sites in each molecular sturcture caused two forms of protomer. One arose from the amino being protonated (amino-protomer) and the other from the carboxyl being protonated (carboxyl-protomer). In the two-dimensional (drift time, m/z) spectrum, the protomers had the same mass, but the distinguishable drift times and fragmentation patterns. For the characterization purpose, the theoretical collision cross section (CCS) values of the protomers were calculated and proven to be consistent with the experimental. Moreover, the quantified relationship between the amino acids and their protomers was evaluated. It showed that the abundance of the carboxyl-protomer was proportional to the concentration of the amino acid, whereas that of the amino-protomer did not have the same trend. Under the atmospheric pressure chemical ionization (APCI) mode, only the carboxyl-protomer was observed. In addition, the amino-protomer and the cluster ions observed under ESI were absent completely. The results demonstrate that the ionization mode impacts heavily on the ionization behaviors of leucine and isoleucine not only on the form of therir protomers but also on the quantified relationship.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201500670_sm_suppl.pdf198.3 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Kientz, C. E.. J. Chromatogr. A, 1998, 814, 1.
- 2 Takats, Z.; Cotte-Rodriguez, I.; Talaty, N.; Chen, H. W.; Cooks, R. G.. Chem. Commun., 2005, 1950.
- 3 Makinen, M.; Nousiainen, M.; Sillanpaa, M.. Mass Spectrom. Rev., 2011, 30, 940.
- 4 Williams, J. P.; Scrivens, J. H.. Rapid Commun. Mass Sp., 2008, 22, 187.
- 5 Budde, K. J.; Holzapfel, W. J.; Beyer, M. M.. J. Electrochem. Soc., 1995, 142, 888.
- 6 Hoaglund-Hyzer, C. S.; Clemmer, D. E.. Anal. Chem., 2001, 73, 177.
- 7 Ruotolo, B. T.; Hyung, S. J.; Robinson, P. M.; Giles, K.; Bateman, R. H.; Robinson, C. V.. Angew. Chem., Int. Ed., 2007, 46, 8001.
- 8 Wittmer, D.; Luckenbill, B. K.; Hill, H. H.; Chen, Y. H.. Anal. Chem., 1994, 66, 2348.
- 9 Tang, K.; Shvartsburg, A. A.; Lee, H. N.; Prior, D. C.; Buschbach, M. A.; Li, F. M.; Tolmachev, A. V.; Anderson, G. A.; Smith, R. D.. Anal. Chem., 2005, 77, 3330.
- 10 Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H. H.. J. Mass Spectrom., 2008, 43, 1.
- 11 Aue, W. P.; Bartholdi, E.; Ernst, R. R.. J. Chem. Phys., 1976, 64, 2229.
- 12 Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; Robinson, C. V.. Science, 2005, 310, 1658.
- 13 Silveira, J. A.; Fort, K. L.; Kim, D.; Servage, K. A.; Pierson, N. A.; Clemmer, D. E.; Russell, D. H.. J. Am. Chem. Soc., 2013, 135, 19147.
- 14 Bleiholder, C.; Do, T. D.; Wu, C.; Economou, N. J.; Bernstein, S. S.; Buratto, S. K.; Shea, J. E.; Bowers, M. T.. J. Am. Chem. Soc., 2013, 135, 16926.
- 15 Morrison, L. J.; Wysocki, V. H.. J. Am. Chem. Soc., 2014, 136, 14173.
- 16 Paglia, G.; Williams, J. P.; Menikarachchi, L.; Thompson, J. W.; Tyldesley-Worster, R.; Halldorsson, S.; Rolfsson, O.; Moseley, A.; Grant, D.; Langridge, J.; Palsson, B. O.; Astarita, G.. Anal. Chem., 2014, 86, 3985.
- 17 May, J. C.; Goodwin, C. R.; Lareau, N. M.; Leaptrot, K. L.; Morris, C. B.; Kurulugama, R. T.; Mordehai, A.; Klein, C.; Barry, W.; Darland, E.; Overney, G.; Imatani, K.; Stafford, G. C.; Fjeldsted, J. C.; McLean, J. A.. Anal. Chem., 2014, 86, 2107.
- 18 Woodham, A. P.; Meijer, G.; Fielicke, A.. J. Am. Chem. Soc., 2013, 135, 1727.
- 19 Le, T. N.; Poully, J. C.; Lecomte, F.; Nieuwjaer, N.; Manil, B.; Desfrancois, C.; Chirot, F.; Lemoine, J.; Dugourd, P.; van der Rest, G.; Gregoire, G.. J. Am. Soc. Mass Spectr., 2013, 24, 1937.
- 20 Morsa, D.; Defize, T.; Dehareng, D.; Jerome, C.; de Pauw, E.. Anal. Chem., 2014, 86, 9693.
- 21 Ahmed, A.; Cho, Y.; Giles, K.; Riches, E.; Lee, J. W.; Kim, H. I.; Choi, C. H.; Kim, S.. Anal. Chem., 2014, 86, 3300.
- 22 Zhang, F.; Guo, S.; Zhang, M. Y.; Zhang, Z. X.; Guo, Y. L.. J. Mass Spectrom., 2015, 50, 906.
- 23 Lapthorn, C.; Dines, T. J.; Chowdhry, B. Z.; Perkins, G. L.; Pullen, F. S.. Rapid Commun. Mass. Sp., 2013, 27, 2399.
- 24 Kaufmann, A.; Butcher, P.; Maiden, K.; Widmer, M.; Giles, K.; Uria, D.. Rapid Commun. Mass Sp., 2009, 23, 985.
- 25 Campbell, J. L.; Le Blanc, J. C. Y.; Schneider, B. B.. Anal. Chem., 2012, 84, 7857.
- 26 Guo, C.; Yue, L.; Guo, M. Z.; Jiang, K. Z.; Pan, Y. J.. J. Am. Soc. Mass Spectr., 2013, 24, 381.
- 27 Forsythe, J. G.; Stow, S. M.; Nefzger, H.; Kwiecien, N. W.; May, J. C.; McLean, J. A.; Hercules, D. M.. Anal. Chem., 2014, 86, 4362.
- 28 Warnke, S.; Seo, J.; Boschmans, J.; Sobott, F.; Scrivens, J. H.; Bleiholder, C.; Bowers, M. T.; Gewinner, S.; Schöllkopf, W.; Pagel, K.; von Helden, G.. J. Am. Chem. Soc., 2015, 137, 4236.
- 29
Liguori, A.;
Napoli, A.;
Sindona, G..
J. Mass Spectrom.,
2000,
35,
139.
10.1002/(SICI)1096-9888(200002)35:2<139::AID-JMS921>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 30 Kurinovich, M. A.; Phillips, L. M.; Sharma, S.; Lee, J. K.. Chem. Commun., 2002, 2354.
- 31 Lucas, B.; Gregoire, G.; Lemaire, J.; Maitre, P.; Ortega, J. M.; Rupenyan, A.; Reimann, B.; Schermann, J. P.; Desfrancois, C.. Phys. Chem. Chem. Phys., 2004, 6, 2659.
- 32 Bythell, B. J.; Maitre, P.; Paizs, B.. J. Am. Chem. Soc., 2010, 132, 14766.
- 33 Link, A. J.; Eng, J.; Schieltz, D. M.; Carmack, E.; Mize, G. J.; Morris, D. R.; Garvik, B. M.; Yates, J. R.. Nat. Biotechnol., 1999, 17, 676.
- 34 Elias, J. E.; Gygi, S. P.. Nat. Methods, 2007, 4, 207.
- 35 Kantiani, L.; Farre, M.; Sibum, M.; Postigo, C.; de Alda, M. L.; Barcelo, D.. Anal. Chem., 2009, 81, 4285.
- 36 Gao, Y. P.; Zhang, J.; Zhang, L.; Guo, Y. L.. Chin. J. Chem., 2010, 28, 1704.
- 37 Rardin, M. J.; Newman, J. C.; Held, J. M.; Cusack, M. P.; Sorensen, D. J.; Li, B. A.; Schilling, B.; Mooney, S. D.; Kahn, C. R.; Verdin, E.; Gibson, B. W.. Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 6601.
- 38 Lowenthal, M. S.; Liang, Y. X.; Phinney, K. W.; Stein, S. E.. Anal. Chem., 2014, 86, 551.
- 39 Cao, Y. J.; Guan, Q.; Sun, T. Q.; Wang, H.; Leng, J. P.; Guo, Y. L.. Anal. Chim. Acta, 2014, 849, 19.
- 40 Qi, W. S.; Guan, Q.; Sun, T. Q.; Cao, Y. J.; Zhang, L.; Guo, Y. L.. Anal. Chim. Acta, 2015, 870, 75.
- 41 Neta, P.; Godugu, B.; Liang, Y. X.; Simon-Manso, Y.; Yang, X. Y.; Stein, S. E.. Rapid Commun. Mass Sp., 2010, 24, 3271.