Self-assembly of Micrometer-long DNA Nanoribbons with Four Oligonucleotides
Corresponding Author
Jie Chao
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, ChinaSearch for more papers by this authorXiangyuan Ouyang
Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Search for more papers by this authorHongzhen Peng
Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Search for more papers by this authorCorresponding Author
Shao Su
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, ChinaSearch for more papers by this authorLianhui Wang
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
Search for more papers by this authorCorresponding Author
Jie Chao
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, ChinaSearch for more papers by this authorXiangyuan Ouyang
Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Search for more papers by this authorHongzhen Peng
Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Search for more papers by this authorCorresponding Author
Shao Su
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, ChinaSearch for more papers by this authorLianhui Wang
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China
Search for more papers by this authorAbstract
DNA nanostructures have found widespread applications in areas including nanoelectronics and biomedicine. However, traditional DNA origami needs a long single-stranded virus DNA and hundreds of short DNA strands, which make this method complicated and money-consuming. Here, we present a protocol for the assembly of DNA nanoribbons with only four oligonucleotides. DNA nanoribbons with different dimensions were successfully assembled with a 96-base scafford strand and three short staples. These biotinylated nanoribbons could also be decorated with streptavidins. This approach suggests that there exist great design spaces for the creation of simple nucleic acid nanostructures which could facilitate their application in plasmonic or drug delivery.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201500211_sm_suppl.pdf76.6 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Seeman, N. C.. Chem. Biol., 2003, 10, 1151.
- 2 Seeman, N. C.. Mol. Biotechnol., 2007, 37, 246.
- 3 Seeman, N. C.. Annu. Rev. Biochem., 2010, 79, 65.
- 4 Seeman, N. C.. J. Theor. Biol., 1982, 99, 237.
- 5 Ma, R. I.; Kallenbach, N. R.; Sheardy, R. D.; Petrillo, M. L.; Seeman, N. C.. Nucleic Acids Res., 1986, 14, 9745.
- 6 Wang, Y.; Mueller, J. E.; Kemper, B.; Seeman, N. C.. Biochemistry, 1991, 30, 5667.
- 7 Wang, X.; Seeman, N. C.. J. Am. Chem. Soc., 2007, 129, 8169.
- 8 Kuzuya, A.; Wang, R.; Sha, R.; Seeman, N. C.. Nano Lett., 2007, 7, 1757.
- 9 Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C.. Nature, 1998, 394, 539.
- 10 Zheng, J.; Constantinou, P. E.; Micheel, C.; Alivisatos, A. P.; Kiehl, R. A.; Seeman, N. C.. Nano Lett., 2006, 6, 1502.
- 11 Park, S. H.; Yin, P.; Liu, Y.; Reif, J. H.; LaBean, T. H.; Yan, H.. Nano Lett., 2005, 5, 729.
- 12 Ding, B.; Sha, R.; Seeman, N. C.. J. Am. Chem. Soc., 2004, 126, 10230.
- 13 Zheng, J. P.; Birktoft, J. J.; Chen, Y.; Wang, T.; Sha, R. J.; Constantinou, P. E.; Ginell, S. L.; Mao, C. D.; Seeman, N. C.. Nature, 2009, 461, 74.
- 14 Rothemund, P. W. K.. Nature, 2006, 440, 297.
- 15 Qian, L. L.; Wang, Y.; Zhang, Z.; Zhao, J.; Pan, D.; Zhang, Y.; Liu, Q.; Fan, C. H.; Hu, J.; He, L.. Chin. Sci. Bull., 2006, 51, 2973.
- 16 Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J.. ACS Nano, 2008, 2, 1213.
- 17 Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J.. Nature, 2009, 459, 73.
- 18 Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M.. Nature, 2009, 459, 414.
- 19 Dietz, H.; Douglas, S. M.; Shih, W. M.. Science, 2009, 325, 725.
- 20 Liedl, T.; Hogberg, B.; Tytell, J.; Ingber, D. E.; Shih, W. M.. Nat. Nanotechnol., 2010, 5, 520.
- 21 Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H.. Science, 2011, 332, 342.
- 22 Han, D.; Pal, S.; Yang, Y.; Jiang, S.; Nangreave, J.; Liu, Y.; Yan, H.. Science, 2013, 339, 1412.
- 23 Ouyang, X.; Li, J.; Liu, H.; Zhao, B.; Yan, J.; Ma, Y.; Xiao, S.; Song, S.; Huang, Q.; Chao, J.; Fan, C.. Small, 2013, 9, 3082.
- 24 Ouyang, X.; Li, J.; Liu, H.; Zhao, B.; Yan, J.; He, D.; Fan, C.; Chao, J.. Methods, 2014, 67, 198.
- 25 Liu, B.; Ouyang, X.; Chao, J.; Liu, H.; Zhao, Y.; Fan, C.. Chin. J. Chem., 2014, 32, 137.
- 26 Wei, B.; Dai, M.; Yin, P.. Nature, 2012, 485, 623.
- 27 Ke, Y.; Ong, L. L.; Shih, W. M.; Yin, P.. Science, 2012, 338, 1177.
- 28 Zhao, Y.-X.; Shaw, A.; Zeng, X.; Benson, E.; Nystr?m, A. M.; H?gberg, B.. ACS Nano, 2012, 6, 8684.
- 29 Chao, J.; Liu, H.; Su, S.; Wang, L.; Huang, W.; Fan, C.. Small, 2014, 10, 4626.
- 30 Zhan, P.; Jiang, Q.; Wang, Z.; Li, N.; Yu, H.; Ding, B.. ChemMedChem, 2014, 9, 2013.
- 31 Kuzuya, A.; Kimura, M.; Numajiri, K.; Koshi, N.; Ohnishi, T.; Okada, F.; Komiyama, M.. ChemBioChem, 2009, 10, 1811.
- 32 Lu, N.; Pei, H.; Ge, Z.; Simmons, C. R.; Yan, H.; Fan, C.. J. Am. Chem. Soc., 2012, 134, 13148.
- 33 Liu, Y.; Lin, C.; Li, H.; Yan, H.. Angew. Chem., Int. Ed., 2005, 44, 4333.
- 34 Cheng, W.; Campolongo, M.; Cha, J.; Tan, S.; Umbach, C.; Muller, D.; Luo, D.. Nat. Mater., 2009, 8, 519.
- 35 Tan, S.; Campolongo, M.; Luo, D.; Cheng, W.. Nat. Nanotechnol., 2011, 6, 268.
- 36 Reuven, D.; Mihiri, S.; Mandal, S.; Williams, M.; Chaudhary, J.; Wang, X.. J. Mater. Chem., 2013, 1, 3926.