Phase Evolution of CuS System in Ethylene Glycol Solution: the Effect of Anion and PVP on the Transformation of Thiourea
Corresponding Author
Zhen Fang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China, Tel.: 0086-0553-3937135; Fax: 0086-0553-3869302Search for more papers by this authorChenyan Wang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorFan Fan
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorShenghua Hao
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorLiuyang Long
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorYixuan Song
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorTingting Qiang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorCorresponding Author
Zhen Fang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China, Tel.: 0086-0553-3937135; Fax: 0086-0553-3869302Search for more papers by this authorChenyan Wang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorFan Fan
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorShenghua Hao
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorLiuyang Long
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorYixuan Song
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorTingting Qiang
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
Search for more papers by this authorAbstract
The transformation mechanisms of thiourea in ethylene glycol solution was systematically investigated in this report, which shows the transformation process is influenced by the anion (NO3−, Cl−, Br−) and polyvinylpyrrolidone (PVP). Thiourea (tu) isomerizes into ammonium thiocyanate when NO3− is present, regardless of the existence of PVP. For Cl−, thiourea coordinates with copper anion to form [Cu(tu)]Cl·1/2H2O complex whether PVP is present. When it comes to Br−, thiourea hydrolyzes in the cooperation of PVP or coordinates with copper anion to form [Cu(tu)Br]·1/2H2O complex without PVP. The different transformation routes will lead to different phase evolution of the CuS system. This work may provide a new understanding of the transformation of thiourea in ethylene glycol solution. The optical properties of the as-prepared copper sulfides exhibit signi?cant stoichiometry-dependent features which may have potential applications in semiconductor photovoltaic devices.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201300200_sm_suppl.pdf1.1 MB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a Wadia, C.; Alivisatos, A. P.; Kammen, D. M.. Environ. Sci. Technol., 2009, 43, 2072.
- 1b Wu, Y.; Wadia, C.; Ma, W.; Sadtler, L. B.; Alivisatos, A. P.. Nano Lett., 2008, 8, 2551.
- 1c George, P. P.; Pol, V. G.; Koltypin, Y.; Calderon-Moreno, J. M.; Genish, I.; Shirly Ben-David, M.; Gedanken, A.. RSC Adv., 2012, 2, 11725.
- 1d Fallah, M. H.; Fallah, S. A.; Zanjanchi, M. A.. Chin. J. Chem., 2011, 29, 1239.
- XX Kassaee, M. Z.; Mohammadi, R.; Masrouri, H.; Movahedi, F.. Chin. Chem. Lett., 2011, 22, 1203.
- 1f Wang, X. L.; Wei, L.; Tao, G. H.; Huang, M. Q.. Chin. Chem. Lett., 2011, 22, 233.
- 1g Cui, W. Q.; Li, L. Y.; Liu, Y. F.; Hu, J. S.; Liang, Y. H.. Chin. J. Inorg. Chem., 2012, 28, 773.
- 2a Yuan, K. D.; Wu, J. J.; Liu, M. L.; Zhang, L. L.; Xu, F. F.; Chen, L. D.; Huang, F. Q.. Appl. Phys. Lett., 2008, 93, 132106.
- 2b Yu, X. L.; Cao, C. B.; Zhu, H. S.; Li, Q. S.; Liu, C. L.; Gong, Q. H.. Adv. Funct. Mater., 2007, 17, 1397.
- 2c Zhao, L.; Tao, F.; Quan, Z.; Zhou, X.; Yuan, Y.; Hu, J.. Mater. Lett., 2012, 68, 28.
- 2d Han, Y.; Wang, Y.; Gao, W.; Wang, Y.; Jiao, L.; Yuan, H.; Liu, S.. Powder Technol., 2011, 212, 64.
- 2e Liu, J.; Xue, D.. J. Mater. Chem., 2011, 21, 223.
- 2f Bo, X.; Bai, J.; Wang, L.; Guo, L.. Talanta, 2010, 81, 339.
- 2g Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J.. Adv. Mater., 2011, 23, 3542.
- 2h Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Govind, T. P.. Environ. Sci. Technol., 2010, 44, 6313.
- 2i Cheng, Z.; Wang, S.; Wang, Q.; Geng, B.. CrystEngComm, 2010, 12, 144.
- 2j Sun, S.; Song, X.; Kong, C.; Deng, D.; Yang, Z.. CrystEngComm, 2012, 14, 67.
- 2k He, W.; Jia, H.; Li, X.; Lei, Y.; Li, J.; Zhao, H.; Mi, L.; Zhang, L.; Zheng, Z.. Nanoscale, 2012, 4, 3501.
- 2l Zhu, T.; Xia, B.; Zhou, L.; Lou, X. W.. J. Mater. Chem., 2012, 22, 7851.
- 2m Ge, Z. H.; Zhang, B. P.; Chen, Y. X.; Yu, Z. X.; Liu, Y.; Li, J. F.. Chem. Commun., 2011, 47, 12697.
- 3a Kumar, P.; Gusain, M.; Nagarajan, R.. Inorg. Chem., 2011, 50, 3065.
- 3b Kumar, P.; Nagarajan, R.. Inorg. Chem., 2011, 50, 9204.
- 3c Leidinger, P.; Popescu, R.; Gerthsen, D.; Lünsdorf, H.; Feldmann, C.. Nanoscale, 2011, 3, 2544.
- 3d Zhang, D. F.; Zhang, H.; Shang, Y.; Guo, L.. Cryst. Growth Des., 2011, 11, 3748.
- 3e Zheng, X.; Hu, Q.. Appl. Phys. A, 2009, 94, 805.
- 4 Fang, Z.; Wang, X.; Shen, J.; Lin, X.; Ni, Y.; Wei, X.. Cryst. Growth Des., 2010, 10, 469.
- 5 Fang, Z.; Liu, Y.; Liu, X.; Wang, Q.; Fan, Y.; Wang, W.; CrystEngComm, 2011, 13, 5653.
- 6 Sun, S.; Song, X.; Kong, C.; Liang, S.; Ding, B.; Yang, Z.. CrystEngComm, 2011, 13, 6200.
- 7a Li, W.; Shavel, A.; Guzman, R.; Rubio-Garcia, J.; Flox, C.; Fan, J.; Cadavid, D.; Ibáñez, M.; Arbiol, J.; Morante, J. R.; Cabot, A.. Chem. Commun., 2011, 47, 10332.
- 7b Xu, M.; Wu, H.; Da, P.; Zhao, D.; Zheng, G.. Nanoscale, 2012, 4, 1794.
- 8a Li, G.; Liu, M.; Liu, H.. CrystEngComm, 2011, 13, 5337.
- 8b Zhao, F.; Chen, X.; Xu, N.; Lu, P.; Zheng, J. G.; Su, Q.; Wu, M.. J. Phys. Chem. Solids, 2006, 67, 1786.
- 8c Li, M.; Wu, Q.; Shi, J.. J. Alloys Compd., 2010, 489, 343.
- 8d Cao, X.; Lu, Q.; Xu, X.; Yan, J.; Zeng, H.. Mater. Lett., 2008, 62, 2567.
- 8e Ni, Y.; Liu, R.; Cao, X.; Wei, X.; Hong, J.. Mater. Lett., 2007, 61, 1986.
- 9a Ariponnammal, S.; Selva-Vennila, R.; Radhika, S.; Arumugam, S.. Cryst. Res. Technol., 2005, 40, 896.
- 9b Ariponnammal, S.; Radhika, S.; Selva-Vennila, R.; Jeya, N. V.. Cryst. Res. Technol., 2005, 40, 786.
- 9c Dhumane, N. R.; Hussaini, S. S.; Dongre, V. G.; Ghugare, P.; Shirsat, M. D.. Appl. Phys. A, 2008, 95, 727.
- 9d Ariponnammal, S.; Chandrasekaran, S.; Sanjeeviraja, C.. Cryst. Res. Technol., 2012, 47, 145.
- 10a Li, X. H.; Li, H. B.; Li, G. D.; Chen, J. S.. Inorg. Chem., 2009, 48, 3132.
- 10b Shao, M.; Wang, D.; Hu, B.; Yu, G.; Qian, Y.. J. Cryst. Growth, 2003, 249, 549.
- 11 William, H. R. S.; Walker, D. G.. J. Am. Chem. Soc., 1956, 78, 5769.
- 12 Krunks, M.; Leskelä, T.; Mannonen, R.; Niinistö, L.. J. Thermal Anal., 1998, 53, 355.
- 13a Xiong, Y.; Washio, I.; Chen, J.; Cai, H.; Li, Z.; Xia, Y.. Langmuir, 2006, 22, 8563.
- 13b Hoppe, C. E.; Lazzari, M.; Pardiñas-Blanco, I.; López-Quintela, M. A.. Langmuir, 2006, 22, 7027.
- 14 Krunks, M.; Leskelä, T.; Mutikainen, I.; Niinistö, L.. J. Thermal Anal., 1999, 56, 479.
- 15a Wang, R.; Yuan, D.; Jiang, F.; Han, L.; Gong, Y.; Hong, M.. Cryst. Growth Des., 2006, 6, 1351.
- 15b De, S.; Pal, A.; Jana, N.; Pal, R. T.. J. Photochem. Photobiol. A: Chem., 2000, 131, 111.
- 16a Zhao, Y. X.; Pan, H. C.; Lou, Y. B.; Qiu, X. F.; Zhu, J. J.; Burda, C.. J. Am. Chem. Soc., 2009, 131, 4253.
- 16b Dou, X.; Li, H.; Mathews, N.; Helena-Wong, L.; Ming-Lam, Y.; Mhaisalkar, S.. J. Electrochem. Soc., 2011, 158, 60.
- 17 Isac, L. A.; Duta, A.; Kriza, A.; Enesca, I. A.; Nanu, M.. J. Phys.: Conf. Ser., 2007, 61, 477.