Metallgewinnung mittels Geobiotechnologie
Metal Recovery via Geobiotechnology
Sabrina Hedrich
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Arbeitsbereich Geomikrobiologie, Fachbereich Geochemie der Rohstoffe, Stilleweg 2, 30655 Hannover, Deutschland.
Search for more papers by this authorCorresponding Author
Axel Schippers
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Arbeitsbereich Geomikrobiologie, Fachbereich Geochemie der Rohstoffe, Stilleweg 2, 30655 Hannover, Deutschland.
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Arbeitsbereich Geomikrobiologie, Fachbereich Geochemie der Rohstoffe, Stilleweg 2, 30655 Hannover, Deutschland.Search for more papers by this authorSabrina Hedrich
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Arbeitsbereich Geomikrobiologie, Fachbereich Geochemie der Rohstoffe, Stilleweg 2, 30655 Hannover, Deutschland.
Search for more papers by this authorCorresponding Author
Axel Schippers
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Arbeitsbereich Geomikrobiologie, Fachbereich Geochemie der Rohstoffe, Stilleweg 2, 30655 Hannover, Deutschland.
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Arbeitsbereich Geomikrobiologie, Fachbereich Geochemie der Rohstoffe, Stilleweg 2, 30655 Hannover, Deutschland.Search for more papers by this authorAbstract
deSpezialisierte säureliebende Bakterien und Archaeen sind in der Lage Wertmetalle wie Kupfer, Gold, Kobalt, Nickel, Zink und Uran aus sulfidischen Erzen zu laugen. Dieser Prozess ist als Biolaugung bekannt und dessen Anwendung in der Bergbauindustrie als Biomining. Laborstudien haben auch die Biolaugung oxidischer Erze wie Laterite sowie von Bergbaurückständen wie Bergehalden und das Recycling von Abfall (secondary mining) gezeigt. Die gelaugten Metalle müssen aus den sauren polymetallischen Lösungen (Bergbau- und Prozesswässer) gewonnen werden, was mittels Biosorption oder Biomineralisation möglich ist.
Abstract
enSpecialized acidophilic bacteria and archaea are able to extract valuable metals such as copper, gold, cobalt, nickel, zinc, and uranium from sulfide ores. This process is known as bioleaching and its application in the mining industry as biomining. Laboratory studies also demonstrated bioleaching of oxide ores such as laterites and of mining residues such as mine tailings as well as metal recycling from waste (secondary mining). Metals being leached have to be recovered from acidic polymetallic solutions (mine and process waters) which is possible via biosorption or biomineralisation.
References
- 1 Geobiotechnologie: Stand und Perspektiven, DECHEMA, Frankfurt am Main 2013. http://dechema.de/geobiotechnologie2013.html?highlight=geobiotechnologie
- 2 Geobiotechnology I – Metal-Related Issues (Eds: A. Schippers), Advances in Biochemical Engineering/Biotechnology, Bd. 141, Springer, Heidelberg 2014.
- 3 Geobiotechnology II – Energy Resources, Subsurface Technologies, Organic Pollutants and Mining Legal Principles (Eds: A. Schippers), Advances in Biochemical Engineering/Biotechnology, Bd. 142, Springer, Heidelberg 2014.
- 4 G. Rossi, Biohydrometallurgy, McGraw-Hill, Hamburg 1990.
- 5 W. Sand, T. Gehrke, R. Hallmann, A. Schippers, Appl. Microbiol. Biotechnol. 1995, 43, 961 – 966.
- 6 K. Bosecker, FEMS Microbiol. Rev. 1997, 20, 591 – 604.
- 7
Microbial Processing of Metal Sulfides (Eds: E. R. Donati), Springer, Dordrecht 2007.
10.1007/1-4020-5589-7 Google Scholar
- 8
Biomining (Eds: D. E. Rawlings), Springer, Berlin 2007.
10.1007/978-3-540-34911-2 Google Scholar
- 9 Biohydrometallurgy: From the Single Cell to the Environment (Eds: A. Schippers), Advanced Materials Research, Bd. 20 – 21, Trans Tech Publications, Pfaffikon 2007.
- 10 Biohydrometallurgy: A Meeting Point between Microbial Ecology, Metal Recovery Processes and Environmental Remediation (Eds: E. R. Donati), Advanced Materials Research, Bd. 71 – 73, Trans Tech Publications, Pfaffikon 2009.
- 11 Biohydrometallurgical Processes: A Practical Approach (Eds: L. G. S. Sobral), Centre for Mineral Technology, Ministry of Science, Technology and Innovation, Rio de Janeiro 2011.
- 12 M. E. Hoque, O. J. Phili, Mater. Sci. Eng., C 2011, 31, 57 – 66.
- 13 J. C. Lee, B. D. Pandey, Waste Manage. 2011, 32, 3 – 18.
- 14 C. L. Brierley, J. A. Brierley, Appl. Microbiol. Biotechnol. 2013, 97, 7543 – 7552.
- 15 M. Vera, A. Schippers, W. Sand, Appl. Microbiol. Biotechnol. 2013, 97, 7529 – 7541.
- 16 D. B. Johnson, B. M. Grail, K. B. Hallberg, Minerals 2013, 3, 49 – 58.
- 17 D. B. Johnson, Curr. Opin. Biotechnol. 2014, 30, 24 – 31.
- 18 Abhilash, B. D. Pandey, K. A. Natarajan, Microbiology for Minerals, Metals, Materials, and the Environment, CRC Press, Boca Raton, FL 2015.
- 19
C. Brierley, in Innovative Process Development in Metallurgical Industry (Eds: V. I. Lakshmanan), Springer, Cham 2016, 109 – 135.
10.1007/978-3-319-21599-0_6 Google Scholar
- 20 D. B. Johnson, C. du Plessis, Miner. Eng. 2015, 75, 2 – 5.
- 21 H. R. Watling, Minerals 2015, 5, 1 – 60.
- 22 H. L. Ehrlich, in Ehrlich's Geomicrobiology (Eds: H. L. Ehrlich), CRC Press, Boca Raton, FL 2016.
- 23 Acidophiles: Life in Extremely Acidic Environments (Eds: R. Quatrini), Caister Academic Press, Poole 2016.
- 24
D. H. R. Morin, P. d'Hugues, in Biomining (Eds: D. E. Rawlings), Springer, Berlin 2007.
10.1007/978-3-540-34911-2_2 Google Scholar
- 25
M. Gericke, Adv. Mater. Res. 2015, 1130, 197 – 200.
10.4028/www.scientific.net/AMR.1130.197 Google Scholar
- 26
J. van Niekerk, Adv. Mater. Res. 2015, 1130, 191 – 196.
10.4028/www.scientific.net/AMR.1130.191 Google Scholar
- 27 D. B. Johnson, Nat. Geosci. 2015, 8, 165 – 166.
- 28 www.biomore.info/home/ (Zugriff am 07. November 2016)
- 29 W. Sand, T. Gehrke, R. Hallmann, A. Schippers, Appl. Microbiol. Biotechnol. 1995, 43, 961 – 966.
- 30
C. Brombacher, R. Bachofen, H. Brandl, Appl. Microbiol. Biotechnol. 1997, 18, 577 – 587.
10.1007/s002530051099 Google Scholar
- 31 F. Glombitza, S. Reichel, in Geobiotechnology I – Metal-Related Issues (Eds: A. Schippers), Advances in Biochemical Engineering/Biotechnology, Bd. 141, Springer, Heidelberg 2014, 49 – 108.
- 32 C. A. du Plessis, W. Slabbert, K. B. Hallberg, D. B. Johnson, Hydrometallurgy 2011, 109, 221 – 229.
- 33 J. Marrero, O. Coto, S. Goldmann, A. Schippers, Environ. Sci. Technol. 2015, 49, 6674 – 6682.
- 34 E. Gock, A. A. Nagy, D. Goldmann, A. Schippers, J. Vasters, in Recycling und Rohstoffe (Ed: K. J. Thomé-Kozmiensky), Bd. 1, TK Verlag Karl Thomé-Kozmiensky, Nietwerder 2007, 321 – 340.
- 35 H. Brandl, S. Lehmann, M. A. Faramarzi, D. Martinelli, Hydrometallurgy 2008, 94, 14 – 17.
- 36 K. Görsch, P. Hoffmann, U. Schlenker, A. Aurich, A. Zehnsdorf, Chem. Ing. Tech. 2015, 87, 1527 – 1534.
- 37 G. Rossi, in Geobiotechnology II – Energy Resources, Subsurface Technologies, Organic Pollutants and Mining Legal Principles (Eds: A. Schippers), Advances in Biochemical Engineering/Biotechnology, Bd. 142, Springer, Heidelberg 2014, 147 – 167.
- 38 M. Tsezos, in Geobiotechnology I – Metal-Related Issues (Eds: A. Schippers), Advances in Biochemical Engineering/Biotechnology, Bd. 141, Springer, Heidelberg 2014, 173 – 210.
- 39 I. Michalak, K. Chojnacka, A. Witek-Krowiak, Appl. Biochem. Biotechnol. 2013, 170, 1389 – 1416.
- 40 D. Park, Y.-S. Yun, J.-M. Park, Biotechnol. Bioprocess Eng. 2010, 15, 86 – 102.
- 41 M. Fomina, G. Gadd, Bioresour. Technol. 2014, 160, 3 – 14.
- 42 M. Gadd, J. Chem. Technol. Biotechnol. 2009, 84, 13 – 28.
- 43 Z. Filipović-Kovačević, L. Sipos, F. Briški, Food Technol. Biotechnol. 2000, 38, 211 – 216.
- 44 P. Ahuja, R. Gupta, R. K. Sabena, Process Biochem. 1999, 34, 77 – 85.
- 45 X. Han, Y. Shan Wong, M. Hung Wong, N. Fung Yee Tam, J. Hazard. Mater. 2008, 158, 615 – 620.
- 46 M. Tsezos, Hydrometallurgy 2001, 59, 241 – 243.
- 47 O. F. Rowe, D. B. Johnson, Syst. Appl. Microbiol. 2008, 31, 68 – 77.
- 48 E. Janneck, I. Arnold, T. Koch, J. Meyer, D. Burghardt, S. Ehinger, in Mine Water & Innovative Thinking: Proceedings of the International Mine Water Association Symposium 2010 (Eds: C. Wolkersdorfer), Cape Breton University Press, Sydney, Kanada 2010.
- 49 S. Hedrich, D. B. Johnson, Bioresour. Technol. 2012, 106, 44 – 49.
- 50 S. Hedrich, D. B. Johnson, Environ. Sci. Technol. 2014, 48, 12206 – 12212.
- 51 C. Kay, S. Hedrich, D. B. Johnson, Adv. Mater. Res. 2013, 825, 479 – 482.
- 52 http://en.paques.nl/products/other/thioteqmetal (Zugriff am 07. November 2016)
- 53 http://en.paques.nl/products/other/sulfateq (Zugriff am 07. November 2016)
- 54 I. Sánchez-Andrea, A. J. M. Stams, J. Weijma, P. Gonzalez Contreras, H. Dijkman, R. A. Rozendal, D. B. Johnson, FEMS Microbiol. Lett. 2016, 363, 1 – 4.
- 55 I. Ñancucheo, D. B. Johnson, Microb. Biotechnol. 2012, 5, 34 – 44.
- 56
S. Hedrich, A. Schippers, D. B. Johnson, Adv. Mater. Res. 2015, 1130, 255 – 258.
10.4028/www.scientific.net/AMR.1130.255 Google Scholar
- 57
L. Castro, M. L. Blázquez, J. A. Muñoz, F. G. González, A. Ballester, Rev. Adv. Sci. Eng. 2014, 3, 199 – 216.
10.1166/rase.2014.1064 Google Scholar
- 58 K. N. Thakkar, S. S. Mhatre, R. Y. Parikh, Nanomedicine 2010, 6, 257 – 262.
- 59 J. R. Stephen, S. J. Macnaughtont, Curr. Opin. Biotechnol. 1999, 10, 230 – 233.
- 60 A. Bharde, A. Wani, Y. Shouche, P. A. Joy, B. L. V. Prasad, M. Sastry, J. Am. Chem. Soc. 2005, 127, 9326 – 9327.
- 61 G. Southam, T. J. Beveridge, Geochim. Cosmochim. Acta 1994, 58, 4527 – 4530.
- 62 T. J. Beveridge, R. G. Murray, J. Bacteriol. 1976, 127, 1502 – 1518.
- 63 K. B. Narayanan, Adv. Colloid Interface Sci. 2010, 156, 1 – 13.
- 64 J. A. Dahl, B. L. Maddux, J. E. Hutchison, Chem. Rev. 2007, 107, 2228 – 2269.