Green Synthesis of Fe3O4-Crataegus tanacetifolia (Lam.) Biochar Magnetic Nanocomposites for Adsorption of Naproxen
Corresponding Author
Alper Solmaz
Department of Environmental Protection and Control, Iskenderun Technical University, Iskenderun Vocational School of Higher Education, Hatay, 31200 Turkey
E-mail: [email protected]
Search for more papers by this authorTalip Turna
Department of Parks and Garden Plants, Dicle University, Diyarbakır Vocational School of Higher Education, Diyarbakır, 21280 Turkey
Search for more papers by this authorAyşe Baran
Department of Plant and Animal Production, Mardin Artuklu University, Kızıltepe Vocational School, Mardin, 47510 Turkey
Search for more papers by this authorCorresponding Author
Alper Solmaz
Department of Environmental Protection and Control, Iskenderun Technical University, Iskenderun Vocational School of Higher Education, Hatay, 31200 Turkey
E-mail: [email protected]
Search for more papers by this authorTalip Turna
Department of Parks and Garden Plants, Dicle University, Diyarbakır Vocational School of Higher Education, Diyarbakır, 21280 Turkey
Search for more papers by this authorAyşe Baran
Department of Plant and Animal Production, Mardin Artuklu University, Kızıltepe Vocational School, Mardin, 47510 Turkey
Search for more papers by this authorAbstract
In this study, naproxen (NPX), one of the emerging contaminants was removed by green synthesizing Fe3O4 coated magnetic biochar nanocomposites (Ct-BMNCs) synthesized from Crataegus tanacetifolia Lam. (Ct) wastes. The characteristics of Ct-BMNCs was examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), Fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential thermal analysis (TGA-DTA), dynamic light scattering (DLS), zetasizer, Brunauer-Emmett-Teller (BET) UV–Vis spectroscopy, and pH point of zero charge (pHpzc). With batch adsorption tests, the effects of pH (4–11), amount of adsorbent (2.5–80 g L−1), time, and initial concentration (3.125–200 mg L−1), and thermodynamic analysis was performed. Also, kinetic and isotherm models and error functions were used. Accordingly, the pHpzc and average surface charge were 5.68 and +11.7 mV, respectively. Moreover, the reaction was exothermic, and the most suitable models were Pseudo-second-order and Freundlich (R2:0.999). Also, qmax was 30.12 mgNPX/gCt-BMNCs. Accordingly, Ct-BMNCs are quite effective in removing NPX.
Open Research
Data Availability Statement
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
- 1J. Näslund, N. Asker, J. Fick, D. G. J. Larsson, L. Norrgren, Aquat. Toxicol. 2020, 227, 105583. DOI: https://doi.org/10.1016/j.aquatox.2020.105583
- 2L. Feng, E. D. van Hullebusch, M. A. Rodrigo, G. Esposito, M. A. Oturan, Chem. Eng. J. 2013, 228, 944–964. DOI: https://doi.org/10.1016/j.cej.2013.05.061
- 3F. Fadzail, M. Hasan, Z. Mokhtar, N. Ibrahim, Mater Today Proc. 2022, 57, 1108–1115. DOI: https://doi.org/10.1016/j.matpr.2021.09.422
- 4A. J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad, Emerg. Contam. 2017, 3 (1), 1–16. DOI: https://doi.org/10.1016/j.emcon.2016.12.004
10.1016/j.emcon.2016.12.004 Google Scholar
- 5C. Xu, L. Niu, H. Guo, X. Sun, L. Chen, W. Tu, Q. Dai, J. Ye, W. Liu, J. Liu, Sci. Total Environ. 2019, 676, 387–395. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.323
- 6H. Yamamoto, Y. Nakamura, S. Moriguchi, Y. Nakamura, Y. Honda, I. Tamura, Y. Hirata, A. Hayashi, J. Sekizawa, Water Res. 2009, 43 (2), 351–362. DOI: https://doi.org/10.1016/j.watres.2008.10.039
- 7J. C. Durán-Álvarez, B. Prado, D. González, Y. Sánchez, B. Jiménez-Cisneros, Sci. Total Environ. 2015, 538, 350–362. DOI: https://doi.org/10.1016/j.scitotenv.2015.08.028
- 8T. aus der Beek, F. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Environ. Toxicol. Chem. 2016, 35 (4), 823–835. DOI: https://doi.org/10.1002/etc.3339
- 9D. Wickramasinghe, in Urban Drought: Emerging Water Challenges in Asia (Eds: B. Ray, R. Shaw), Springer, Singapore 2019.
- 10C. Grandclément, I. Seyssiecq, A. Piram, P. Wong-Wah-Chung, G. Vanot, N. Tiliacos, N. Roche, P. Doumenq, Water Res. 2017, 111, 297–317. DOI: https://doi.org/10.1016/j.watres.2017.01.005
- 11M. Szopińska, J. Potapowicz, K. Jankowska, A. Luczkiewicz, O. Svahn, E. Björklund, C. Nannou, D. Lambropoulou, Ż. Polkowska, Sci. Total Environ. 2022, 835, 155400. DOI: https://doi.org/10.1016/j.scitotenv.2022.155400
- 12J. A. Rodrigues, S. Silva, V. V. Cardoso, M. J. Benoliel, E. Cardoso, M. R. Coelho, A. Martins, C. M. M. Almeida, Environ. Manage. 2021, 68 (3), 411–425. DOI: https://doi.org/10.1007/s00267-021-01496-5
- 13K. Kołecka, M. Gajewska, S. Cytawa, P. Stepnowski, M. Caban, Bioresour. Technol. 2020, 318, 124068. DOI: https://doi.org/10.1016/j.biortech.2020.124068
- 14P. Grenni, L. Patrolecco, N. Ademollo, A. Tolomei, A. Barra Caracciolo, Microchem. J. 2013, 107, 158–164. DOI: https://doi.org/10.1016/j.microc.2012.06.008
- 15Z. Ye, R. Oriol, C. Yang, I. Sirés, X.-Y. Li, Chem. Eng. J. 2022, 433, 133547. DOI: https://doi.org/10.1016/j.cej.2021.133547
- 16Y.-J. Liu, S.-L. Lo, Y.-H. Liou, C.-Y. Hu, Sep. Purif. Technol. 2015, 152, 148–154. DOI: https://doi.org/10.1016/j.seppur.2015.08.015
- 17F. Audino, J. Arboleda, M. Petrovic, R. G. Cudinach, S. S. Pérez, Water (Basel). 2023, 15 (18), 3180. DOI: https://doi.org/10.3390/w15183180
- 18T. Wang, W. M. de Vos, J. de Grooth, J Memb. Sci. 2022, 646, 120209. DOI: https://doi.org/10.1016/j.memsci.2021.120209
- 19M. K. Keşir, Z. Bıyıklıoğlu, J. Organomet. Chem. 2024, 1005, 122969. DOI: https://doi.org/10.1016/j.jorganchem.2023.122969
- 20M. J. Gallardo-Altamirano, P. Maza-Márquez, N. Montemurro, S. Pérez, B. Rodelas, F. Osorio, C. Pozo, Sci. Total Environ. 2021, 789, 147869. DOI: https://doi.org/10.1016/j.scitotenv.2021.147869
- 21J. A. Mir-Tutusaus, A. Jaén-Gil, D. Barceló, G. Buttiglieri, R. Gonzalez-Olmos, S. Rodriguez-Mozaz, G. Caminal, M. Sarrà, Sci. Total Environ. 2021, 773, 145374. DOI: https://doi.org/10.1016/j.scitotenv.2021.145374
- 22B. Muñoz-Palazon, A. Rosa-Masegosa, R. Vilchez-Vargas, A. Link, S. Gorrasi, J. Gonzalez-Lopez, A. Gonzalez-Martinez, J. Water Process Eng. 2022, 47, 102691. DOI: https://doi.org/10.1016/j.jwpe.2022.102691
- 23A. Solmaz, M. Karta, T. Depci, T. Turna, Z. A. Sari, Environ. Monit. Assess. 2023, 195 (7), 797. DOI: https://doi.org/10.1007/s10661-023-11421-4
- 24A. Mojiri, R. Andasht Kazeroon, A. Gholami, Water (Basel). 2019, 11 (3), 551. DOI: https://doi.org/10.3390/w11030551
- 25A. Solmaz, T. Turna, A. Baran, Can. J. Chem. Eng. 2024, 102 (6), 2051–2067. DOI: https://doi.org/10.1002/cjce.25179
- 26A. Solmaz, T. Turna, A. Baran, Biomass Convers Biorefin. 2024, 14, 10771–10789. DOI: https://doi.org/10.1007/s13399-024-05355-1
- 27Y. Li, B. Xing, Y. Ding, X. Han, S. Wang, Bioresour. Technol. 2020, 312, 123614. DOI: https://doi.org/10.1016/j.biortech.2020.123614
- 28Z. Anfar, M. Zbair, H. Ait Ahsiane, A. Jada, N. El Alem, RSC Adv. 2020, 10 (19), 11371–11380. DOI: https://doi.org/10.1039/D0RA00617C
- 29G. G. Moyo, Z. Hu, M. D. Getahun, Environ. Sci. Pollut. Res. 2020, 27 (23), 28679–28694. DOI: https://doi.org/10.1007/s11356-020-09163-8
- 30T. Ai, X. Jiang, Q. Liu, L. Lv, H. Wu, Bioresour. Technol. 2019, 273, 8–15. DOI: https://doi.org/10.1016/j.biortech.2018.10.039
- 31J. Heo, Y. Yoon, G. Lee, Y. Kim, J. Han, C. M. Park, Bioresour. Technol. 2019, 281, 179–187. DOI: https://doi.org/10.1016/j.biortech.2019.02.091
- 32R. Li, Z. Wang, X. Zhao, X. Li, X. Xie, Environ. Sci. Pollut. Res. 2018, 25 (31), 31136–31148. DOI: https://doi.org/10.1007/s11356-018-3064-1
- 33S. Fan, L. Zhang, Biomass Convers Biorefin. 2021, 11 (5), 1719–1732. DOI: https://doi.org/10.1007/s13399-019-00545-8
- 34K. Kucharska, P. Rybarczyk, I. Hołowacz, R. Łukajtis, M. Glinka, M. Kamiński, Molecules 2018, 23 (11), 2937. DOI: https://doi.org/10.3390/molecules23112937
- 35S. Khodadoust, F. Zeraatpisheh, Chem. Eng. Technol. 2024, 47 (9), e202300561. DOI: https://doi.org/10.1002/ceat.202300561
- 36Y. Li, M. Kumar Awasthi, R. Sindhu, P. Binod, Z. Zhang, M. J. Taherzadeh, Bioresour. Technol. 2023, 384, 129329. DOI: https://doi.org/10.1016/j.biortech.2023.129329
- 37S. Manikandan, S. Vickram, R. Subbaiya, N. Karmegam, S. Woong Chang, B. Ravindran, M. Kumar Awasthi, Bioresour. Technol. 2023, 388, 129725. DOI: https://doi.org/10.1016/j.biortech.2023.129725
- 38H. D. A. T. G. Beyene, in Sustainable Polymer Composites and Nanocomposites (Ed: S. T. R. K. M. A. M. A. Inamuddin), Springer, Berlin 2019.
10.1007/978-3-030-05399-4_14 Google Scholar
- 39M. Benli, N. Yiğit, F. Geven, K. Güney, Ü. Bingöl, Cell Biochem. Funct. 2008, 26 (8), 844–851. DOI: https://doi.org/10.1002/cbf.1515
- 40N. Peng, B. Peng, L.-Y. Chai, M. Li, J.-M. Wang, H. Yan, Y. Yuan, Miner. Eng. 2012, 35, 57–60. DOI: https://doi.org/10.1016/j.mineng.2012.05.014
- 41P. Di Martino, C. Barthélémy, G. F. Palmieri, S. Martelli, Eur. J. Pharm. Sci. 2001, 14 (4), 293–300. DOI: https://doi.org/10.1016/S0928-0987(01)00179-8
- 42S. K. Lagergren, Sven. Vetenskapsakad. Handingarl. 1898, 24, 1–39.
- 43Y. S. Ho, D. Wase’, C. F. Forster, Water SA. 1996, 22, (3), 214–219.
- 44G. P. Jeppu, T. P. Clement, J. Contam. Hydrol. 2012, 129–130, 46–53. DOI: https://doi.org/10.1016/J.JCONHYD.2011.12.001
- 45C. H. Bolster, G. M. Hornberger, Soil Sci. Soc. Am. J. 2007, 71 (6), 1796–1806. DOI: https://doi.org/10.2136/sssaj2006.0304
- 46K. Y. Foo, B. H. Hameed, Chem. Eng. J. 2010, 156 (1), 2–10. DOI: https://doi.org/10.1016/J.CEJ.2009.09.013
- 47B. Subramanyam, A. Das, J. Environ. Health Sci. Eng. 2014, 12 (1), 92. DOI: https://doi.org/10.1186/2052-336X-12-92
- 48K. V. Kumar, K. Porkodi, F. Rocha, J. Hazard. Mater. 2008, 150 (1), 158–165. DOI: https://doi.org/10.1016/J.JHAZMAT.2007.09.020
- 49H., C.-G. H. Hyun-Ju, Molecules 2023, 28, 2075.
- 50S. Elarbaoui, Main Group Met. Chem. 2024, 47, 20230029. DOI: https://doi.org/10.1515/mgmc-2023-0029
- 51S. Bassim, A. K. Mageed, A. A. AbdulRazak, H. S. Majdi, Inorganics (Basel) 2022, 10 (12), 260. DOI: https://doi.org/10.3390/inorganics10120260
- 52K. Manimaran, D. H. Y. Yanto, M. Govindasamy, B. Karunanithi, F. A. Alasmary, R. A. Habab, Biomass Convers Biorefin. 2023, 14 (11), 1–11. DOI: https://doi.org/10.1007/s13399-023-04382-8
- 53F. Buarki, H. AbuHassan, F. Al Hannan, F. Z. Henari, J Nanotechnol. 2022, 2022, 1–6. DOI: https://doi.org/10.1155/2022/5474645
- 54N. Karami, A. Mohammadpour, M. R. Samaei, A. M. Amani, M. Dehghani, R. S. Varma, J. N. Sahu, Int. J. Biol. Macromol. 2024, 254 (P1), 127663. DOI: https://doi.org/10.1016/j.ijbiomac.2023.127663
- 55A. Faruruwa, A. Hi, Tomori, J. Appl. Sci. Environ. Manage. 2024, 28 (3), 823–839.
- 56D. D. Sewu, H. N. Tran, G. Ohemeng-Boahen, S. H. Woo, Sci. Total Environ. 2020, 717, 137091. DOI: https://doi.org/10.1016/J.SCITOTENV.2020.137091
- 57P. Karpagavinayagam, C. Vedhi, Vacuum 2019, 160 (12159), 286–292. DOI: https://doi.org/10.1016/j.vacuum.2018.11.043
- 58P. Ganesan, R. Kamaraj, S. Vasudevan, J. Taiwan Inst. Chem. Eng. 2013, 44 (5), 808–814. DOI: https://doi.org/10.1016/j.jtice.2013.01.029
- 59N. Kataria, V. K. Garg, J. Environ. Chem. Eng. 2017, 5 (6), 5420–5428. DOI: https://doi.org/10.1016/j.jece.2017.10.035
- 60B. Kakavandi, R. R. Kalantary, A. J. Jafari, S. Nasseri, A. Ameri, A. Esrafili, A. Azari, Clean (Weinh). 2015, 43 (8), 1157–1166. DOI: https://doi.org/10.1002/clen.201400568
- 61M. Şahin, Y. Arslan, F. Tomul, Res. Chem. Intermed. 2022, 48 (12), 5209–5226. DOI: https://doi.org/10.1007/s11164-022-04862-y
- 62T. M. Salem Attia, X. L. Hu, D. Q. Yin, Chemosphere 2013, 93 (9), 2076–2085. DOI: https://doi.org/10.1016/j.chemosphere.2013.07.046
- 63M. H. Dehghani, R. R. Karri, M. Alimohammadi, S. Nazmara, A. Zarei, Z. Saeedi, J. Mol. Liq. 2020, 311, 113317. DOI: https://doi.org/10.1016/j.molliq.2020.113317
- 64D. Aksu Demirezen, Y. Ş. Yıldız, D. Demirezen Yılmaz, Environ. Nanotechnol. Monit. Manag. 2019, 11, 100219. DOI: https://doi.org/10.1016/j.enmm.2019.100219
10.1016/j.enmm.2019.100219 Google Scholar
- 65J. Wang, X. Guo, J. Hazard. Mater. 2020, 390, 122156. DOI: https://doi.org/10.1016/J.JHAZMAT.2020.122156
- 66J. Cao, Z. Yang, W. Xiong, Y. Zhou, Y. Peng, X. Li, C. Zhou, R. Xu, Y. Zhang, Chem. Eng. J. 2018, 353, 126–137. DOI: https://doi.org/10.1016/j.cej.2018.07.060
- 67V. Singh, V. C. Srivastava, Environ. Pollut. 2020, 259, 113822. DOI: https://doi.org/10.1016/j.envpol.2019.113822
- 68M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, M. Sillanpää, Sci. Total Environ. 2022, 812, 151334. DOI: https://doi.org/10.1016/j.scitotenv.2021.151334
- 69G. D. Bozyiğit, B. T. Zaman, O. K. Özdemir, Y. Kılınç, D. S. Chormey, S. Bakırdere, G. O. Engin, Environ. Monit. Assess. 2024, 196 (1), 77. DOI: https://doi.org/10.1007/s10661-023-12231-4
- 70Y.-S. Kim, J.-H. Kim, J. Chem. Thermodyn. 2019, 130, 104–113. DOI: https://doi.org/10.1016/j.jct.2018.10.005
- 71M. S. Shamsudin, S. F. Azha, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, S. Ismail, Chem. Eng. J. 2022, 428, 131929. DOI: https://doi.org/10.1016/j.cej.2021.131929
- 72B. Liu, P. Lv, Q. Wang, Y. Bai, J. Wang, W. Su, X. Song, G. Yu, J. Environ. Chem. Eng. 2024, 12 (3), 112635. DOI: https://doi.org/10.1016/j.jece.2024.112635
- 73Z. Du, S. Deng, Y. Bei, Q. Huang, B. Wang, J. Huang, G. Yu, J. Hazard. Mater. 2014, 274, 443–454. DOI: https://doi.org/10.1016/j.jhazmat.2014.04.038
- 74K. B. Tan, M. Vakili, B. A. Horri, P. E. Poh, A. Z. Abdullah, B. Salamatinia, Sep. Purif. Technol. 2015, 150, 229–242. DOI: https://doi.org/10.1016/j.seppur.2015.07.009
- 75S. Zhang, Y. Dong, Z. Yang, W. Yang, J. Wu, C. Dong, Chem. Eng. J. 2016, 304, 325–334. DOI: https://doi.org/10.1016/j.cej.2016.06.087
- 76A. Parashar, S. Sikarwar, R. Jain, Int. J. Environ. Anal. Chem. 2022, 102 (1), 117–133. DOI: https://doi.org/10.1080/03067319.2020.1716977
- 77T. J. Al-Musawi, A. H. Mahvi, A. D. Khatibi, D. Balarak, J. Porous Mater. 2021, 28 (3), 835–852. DOI: https://doi.org/10.1007/s10934-021-01039-7
- 78J. Xu, Y. Tian, Z. Li, B. H. Tan, K. Y. Tang, K. C. Tam, J. Ind. Eng. Chem. 2022, 109, 461–474. DOI: https://doi.org/10.1016/j.jiec.2022.02.032