Modification and Optimization Study of ZIF-8 with Branched Polyethyleneimine Modified Polysulfone Membrane
Sapna Gawali
Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Rd, Gandhinagar, Raysan, Gujarat, 382007 India
Search for more papers by this authorCorresponding Author
Manish Kumar Sinha
Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Rd, Gandhinagar, Raysan, Gujarat, 382007 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Surendra Sasikumar Jampa
Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Rd, Gandhinagar, Raysan, Gujarat, 382007 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorSapna Gawali
Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Rd, Gandhinagar, Raysan, Gujarat, 382007 India
Search for more papers by this authorCorresponding Author
Manish Kumar Sinha
Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Rd, Gandhinagar, Raysan, Gujarat, 382007 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Surendra Sasikumar Jampa
Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Rd, Gandhinagar, Raysan, Gujarat, 382007 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
In this work, zeolitic imidazolate framework-8 (ZIF-8) and modified ZIF-8 with polyethyleneimine (PEI) were incorporated into the PSF (polysulfone) matrix. The fabricated PSF/ZIF-8-PEI mixed matrix membranes (MMMs) showed better results (rejection of bovine serum albumin (BSA) 98.9 %) for oil–water emulsion than PSF/ZIF-8 MMMs. It is noticed that the steady-state pure water flux (PWF) of PSF/ZIF-8-PEI MMMs is 2.73 times greater than PSF/ZIF-8 MMMs. During the membrane performance for ultrafiltration (UF), various parameters are affected, such as pH, loading of additives, and feed concentration. To determine the optimization performance of the membrane (both filler MMMs), the response surface methodology (RSM) (Box–Behnken method) is used to design the experiment. The optimized results investigated the maximum BSA rejection of 99.99 % and flux recovery ratio (FRR) of (0.97) 97 %. This is the novelty of the present work. The MMMs were characterized in PXED, Fourier transform infrared (FTIR), TGA, SEM, and water contact angle (WCA) for confirmation of filler materials.
Supporting Information
Filename | Description |
---|---|
ceat70012-sup-0001-DataS1.docx5.2 MB | Supporting Information |
ceat70012-sup-0002-DataS2.docx5.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Al Aani, T. N. Mustafa, N. Hilal, J. Water Process Eng. 2020, 35, 101241. DOI: https://doi.org/10.1016/j.jwpe.2020.101241
- 2B. Saini, M. K. Sinha, S. K. Dash, J. Water Process Eng. 2019, 30. DOI: https://doi.org/10.1016/j.jwpe.2018.03.018
- 3H. Abu Hasan, M. H. Muhammad, N. I. Ismail, J. Water Process Eng. 2020, 33, 101035. DOI: https://doi.org/10.1016/j.jwpe.2019.101035
- 4M. K. Sinha, M. K. Purkait, RSC Adv. 2015, 5, 22609–22619. DOI: https://doi.org/10.1039/C4RA13863E
- 5M. K. Sinha, M. K. Purkait, RSC Adv. 2015, 5 (81), 66109–66121. DOI: https://doi.org/10.1039/c5ra08743k
- 6B. Van Der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, Environ. Prog. 2003, 22 (1), 46–56. DOI: https://doi.org/10.1002/ep.670220116
- 7M. A. Islam, I. Ali, S. M. A. Karim, M. S. Hossain Firoz, A. N. Chowdhury, D. W. Morton, M. J. Angove, J. Water Process Eng. 2019, 32, 100911. DOI: https://doi.org/10.1016/j.jwpe.2019.100911
- 8I. Aa-co-acmo, J. Membr. Sci. 2018, 572, 184–197. DOI: https://doi.org/10.1016/j.memsci.2018.11.017
10.1016/j.memsci.2018.11.017 Google Scholar
- 9F. Mohammadnezhad, M. Feyzi, S. Zinadini, J. Ind. Eng. Chem. 2019, 71, 99–111. DOI: https://doi.org/10.1016/j.jiec.2018.09.032
- 10S. Acarer, SAK Univ. J. Sci. 2022, 26 (6), 1196–1208. DOI: https://doi.org/10.16984/saufenbilder.1135285
10.16984/saufenbilder.1135285 Google Scholar
- 11X. Gao, S. Du, J. Si, X. Liu, Z. Cui, Q. Wang, Polym. Eng. & Sci. 2023, 63 (5), 1423–1438. DOI: https://doi.org/10.1002/pen.26294
- 12N. Chen, J. Zhao, L. Shi, A. Goto, R. Wang, J. Membr. Sci. 2023, 685, 121919. DOI: https://doi.org/10.1016/j.memsci.2023.121919
- 13S. Güneş-Durak, S. Acarer-Arat, M. Tüfekci, İ. Pir, Z. Üstkaya, N. Öz, N. Tüfekci, Omega ACS 2024, 9 (29), 31556–31568. DOI: https://doi.org/10.1021/acsomega.4c01410
- 14S. Acarer, Water Sci. Technol. 2023, 88 (1), 199–219. DOI: https://doi.org/10.2166/wst.2023.186
- 15A. Jawed, V. Saxena, L. M. Pandey, J. Water Process Eng. 2020, 33, 101009. DOI: https://doi.org/10.1016/j.jwpe.2019.101009
- 16D. D. Kachhadiya, Z. V. P. Murthy, Mater. Today Chem. 2021, 22, 100591. DOI: https://doi.org/10.1016/j.mtchem.2021.100591
- 17A. Khan, T. A. Sherazi, Y. Khan, S. Li, S. A. R. Naqvi, Z. Cui, J. Membr. Sci. 2018, 554, 71–82. DOI: https://doi.org/10.1016/j.memsci.2018.02.063
- 18P. Kumar, V. Bansal, K. H. Kim, E. E. Kwon, J. Ind. Eng. Chem. 2018, 62, 130–145. DOI: https://doi.org/10.1016/j.jiec.2017.12.051
- 19X. Ou, Y. Ren, J. Guo, Y. Zhou, Y. Yuan, Q. Liu, F. Yan, ACS Appl. Polym. Mater. 2020, 2 (8), 3433–3439. DOI: https://doi.org/10.1021/acsapm.0c00495
- 20A. Karimi, A. Khataee, V. Vatanpour, M. Safarpour, Sep. Purif. Technol. 2019, 229, 115838. DOI: https://doi.org/10.1016/j.seppur.2019.115838
- 21X. Fang, J. Li, X. Li, X. Sun, J. Shen, W. Han, L. Wang, J. Membr. Sci. 2015, 476, 216–223. DOI: https://doi.org/10.1016/j.memsci.2014.11.021
- 22S. Wadhawan, A. Jain, J. Nayyar, S. K. Mehta, J. Water Process Eng. 2020, 33, 101038. DOI: https://doi.org/10.1016/j.jwpe.2019.101038
- 23L. Yang, Z. Wang, J. Zhang, J. Mater. Chem. A Mater. Energy Sustain. 2017, 5, 1–14. DOI: https://doi.org/10.1039/C7TA03244G
- 24S. Sundarajan, Y. Subin, G. Arthanareeswaran, Desalin. Water Treat. 2021, 228, 198–207. DOI: https://doi.org/10.5004/dwt.2021.27313
- 25M. Sadrzadeh, S. Bhattacharjee, J. Membr. Sci. 2013, 441, 31–44. DOI: https://doi.org/10.1016/j.memsci.2013.04.009
- 26A. Salahi, I. Noshadi, R. Badrnezhad, B. Kanjilal, T. Mohammadi, J. Environ. Chem. Eng. 2013, 1 (3), 218–225. DOI: https://doi.org/10.1016/j.jece.2013.04.021
- 27S. Sasi, K. Jampa, A. P. Unnarkat, R. Vanshpati, S. Pandian, M. K. Sinha, Environ. Technol. Innov. 2020, 19, 100927. DOI: https://doi.org/10.1016/j.eti.2020.100927
10.1016/j.eti.2020.100927 Google Scholar
- 28A. Sharma, P. Kodgire, S. S. Kachhwaha, Investigation of ultrasound-assisted KOH and CaO catalyzed transesterification for biodiesel production from waste cotton-seed cooking oil: process optimization and conversion rate evaluation, Elsevier Ltd, Amsterdam 2020.
- 29S. Oza, N. Prajapati, P. Kodgire, S. S. Kachhwaha, Water-Energy Nexus 2021, 4, 187–198. DOI: https://doi.org/10.1016/j.wen.2021.11.001
- 30B. Saini, D. Vaghani, S. Khuntia, M. K. Sinha, A. Patel, R. Pindoria, J. Membr. Sci. 2020, 603, 118047. DOI: https://doi.org/10.1016/j.memsci.2020.118047
- 31M. Peydayesh, M. Bagheri, T. Mohammadi, O. Bakhtiari, RSC Adv. 2017, 7 (40), 24995–25008. DOI: https://doi.org/10.1039/c7ra03566g
- 32E. Velayi, R. Norouzbeigi, Appl. Surf. Sci. 2023, 611, 155594. DOI: https://doi.org/10.1016/j.apsusc.2022.155594
- 33Z. Tianwei, L. Xiangchen, W. Guofeng, L. Hao, X. Lei, Z. Yihao, L. Qiang, Z. Cunwei, Int. J. Hydrogen Energy 2021, 46 (21), 12035–12061. DOI: https://doi.org/10.1016/j.ijhydene.2020.12.201
10.1016/j.ijhydene.2020.12.201 Google Scholar
- 34R. Singh, M. K. Sinha, M. K. Purkait, Sep. Purif. Technol. 2020, 250, 117247. DOI: https://doi.org/10.1016/j.seppur.2020.117247
- 35Y. Ma, Y. Sun, J. Yin, H. Sun, H. Wu, H. Wang, Y. Zhang, X. Feng, J. Meng, J. Taiwan Inst. Chem. Eng. 2019, 104, 273–283. DOI: https://doi.org/10.1016/j.jtice.2019.08.012
- 36N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, R. S. Murali, T. Matsuura, RSC Adv. 2015, 5 (38), 30206–30215. DOI: https://doi.org/10.1039/c5ra00567a
- 37M. yue Zhang, X. ping Wang, R. Lin, Y. Liu, F. shan Chen, L. sheng Cui, X. min Meng, J. Hou, J. Membr. Sci. 2021, 618, 118630. DOI: https://doi.org/10.1016/j.memsci.2020.118630
10.1016/j.memsci.2020.118630 Google Scholar
- 38S. Saki, N. Uzal, Environ. Sci. Pollut. Res. 2018, 25 (25), 25315–25326. DOI: https://doi.org/10.1007/s11356-018-2615-9
- 39T. Menezes, K. Santos, E. Franceschi, G. Borges, C. Dariva, S. Egues, J. De Conto, C. Santana, J. Mater. Res. 2020, 35 (21), 2936–2949. DOI: https://doi.org/10.1557/jmr.2020.276
- 40Y. Wang, Y. Xu, H. Ma, R. Xu, H. Liu, D. Li, Z. Tian, Microporous Mesoporous Mater. 2014, 195, 50–59. DOI: https://doi.org/10.1016/j.micromeso.2014.04.016
- 41A. Modi, Z. Jiang, R. Kasher, Chem. Eng. J. 2022,, 133513. DOI: https://doi.org/10.1016/j.cej.2021.133513
- 42Y. Gao, Z. Qiao, S. Zhao, Z. Wang, J. Wang, J. Mater. Chem. A 2018, 6 (7), 3151–3161. DOI: https://doi.org/10.1039/c7ta10322k
- 43A. V Gawali, S. Gawali, S. S. Jampa, M. K. Sinha, Sustain. Chem. Clim. Action. 2024, 5, 100044. DOI: https://doi.org/10.1016/j.scca.2024.100044
- 44S. Zhang, Y. Liu, D. Li, Q. Wang, F. Ran, Appl. Surf. Sci. 2020, 505, 144553. DOI: https://doi.org/10.1016/j.apsusc.2019.144553
- 45M. K. Sinha, M. K. Purkait, Desalination 2015, 355, 155–168. DOI: https://doi.org/10.1016/j.desal.2014.10.017
- 46S. Benkhaya, S. M'rabet, R. Hsissou, A. El Harfi, J. Mater. Res. Technol. 2020, 9 (3), 4763–4772. DOI: https://doi.org/10.1016/j.jmrt.2020.02.102
- 47N. Wang, H. Sun, H. Yang, X. Li, S. Ji, Q. An, ACS Appl. Nano Mater. 2020, 3 (6), 5874–5880. DOI: https://doi.org/10.1021/acsanm.0c01029
- 48Y. Xiao, W. Zhang, Y. Jiao, Y. Xu, H. Lin, J. Membr. Sci. 2021, 624, 119101. DOI: https://doi.org/10.1016/j.memsci.2021.119101
- 49T. Xu Wang, S. Ruo Chen, T. Wang, L. Guang Wu, Y. Xing Wang, Appl. Surf. Sci. 2022, 576, 151815. DOI: https://doi.org/10.1016/j.apsusc.2021.151815
10.1016/j.apsusc.2021.151815 Google Scholar
- 50H. Nabipour, S. Nie, X. Wang, L. Song, Y. Hu, Cellulose 2020, 27 (4), 2237–2251. DOI: https://doi.org/10.1007/s10570-019-02860-9
- 51Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Chem. Commun. 2011, 47 (7), 2071–2073. DOI: https://doi.org/10.1039/c0cc05002d
- 52M. K. Sinha, M. K. Purkait, J. Membr. Sci. 2014, 464, 20–32. DOI: https://doi.org/10.1016/j.memsci.2014.03.067
- 53M. E. Mohamed, B. A. Abd-El-Nabey, Sci. Rep. 2022, 12 (1), 1–14. DOI: https://doi.org/10.1038/s41598-022-19816-y
- 54M. Bahmani, S. Zarghami, T. Mohammadi, A. A. Asadi, S. Khanlari, Polym. Adv. Technol. 2021, 32 (2), 886–899. DOI: https://doi.org/10.1002/pat.5140
- 55P. Vandezande, L. E. M. Gevers, I. F. J. Vankelecom, Chem. Soc. Rev. 2008, 37 (2), 365–405. DOI: https://doi.org/10.1039/b610848m
- 56S. Sablani, M. Goosen, R. Al-Belushi, M. Wilf, Desalination 2001, 141 (3), 269–289. DOI: https://doi.org/10.1016/S0011-9164(01)85005-0
- 57B. Saini, M. K. Sinha, in Clim. Impacts Water Resour. India Environ. Heal., (Eds: A. Pandey, S. K. Mishra, M. L. Kansal, R. D. Singh, V. P. Singh) Springer International Publishing, Cham 2021. DOI: https://doi.org/10.1007/978-3-030-51427-3_21
- 58M. K. Sinha, M. K. Purkait, RSC Adv. 2015, 5 (29), 22609–22619. DOI: https://doi.org/10.1039/C4RA13863E
- 59S. Gasemloo, M. Khosravi, M. R. Sohrabi, S. Dastmalchi, P. Gharbani, J. Clean. Prod. 2018, 208, 736–742. DOI: https://doi.org/10.1016/j.jclepro.2018.10.177
10.1016/j.jclepro.2018.10.177 Google Scholar
- 60E. O. Akdemir, Desalin. Water Treat. 2023, 287, 89–95. DOI: https://doi.org/10.5004/dwt.2023.29400
- 61X. Chen, G. Huang, C. An, R. Feng, Y. Wu, C. Huang, J. Membr. Sci. 2019, 582, 70–82. DOI: https://doi.org/10.1016/j.memsci.2019.03.091