Applicability of Deep Eutectic Solvents in Oil and Gas Processing Fields for CO2 Control
Ihtisham Ul Haq
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, CO2 Research Centre (CO2RES), 32610 Bandar Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, Center of Advanced Process Safety (CAPS), Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Bhajan Lal
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, CO2 Research Centre (CO2RES), 32610 Bandar Seri Iskandar, Perak, Malaysia
Correspondence: Bhajan Lal ([email protected]), Universiti Teknologi PETRONAS, Chemical Engineering Department, Bandar Seri Iskandar, 32610 Perak, Malaysia.Search for more papers by this authorDzulkarnain B. Zaini
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, Center of Advanced Process Safety (CAPS), Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorIhtisham Ul Haq
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, CO2 Research Centre (CO2RES), 32610 Bandar Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, Center of Advanced Process Safety (CAPS), Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Bhajan Lal
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, CO2 Research Centre (CO2RES), 32610 Bandar Seri Iskandar, Perak, Malaysia
Correspondence: Bhajan Lal ([email protected]), Universiti Teknologi PETRONAS, Chemical Engineering Department, Bandar Seri Iskandar, 32610 Perak, Malaysia.Search for more papers by this authorDzulkarnain B. Zaini
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, Center of Advanced Process Safety (CAPS), Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorAbstract
Anthropogenic greenhouse gas emissions, particularly CO2 emissions, have grown substantially, posing environmental challenges that affect mankind and ecosystems. As a possible consequence, carbon capture and storage is a viable solution to this worldwide problem. However, some aqueous solvents have been applied to capture greenhouse gases, though they are not environmentally benign. Deep eutectic solvents (DESs) emerged as a unique choice according to research into greener solvents for this activity. The applications of DESs and the gas solubility of various DESs with emphasis on CO2 solubility in the oil and gas field are evaluated. This innovative solvent is also described in terms of its preparation and chemical composition. Detailed literature on investigation of CO2 solubility in DESs based on experimental data is included.
References
- 1 B. Li, Y. Duan, D. Luebke, B. Morreale, Appl. Energy 2013, 102, 1439–1447. DOI: https://doi.org/10.1016/j.apenergy2012.09.009
- 2 C. Song, Catal. Today 2006, 115 (1–4), 2–32. DOI: https://doi.org/10.1016/j.cattod.2006.02.029
- 3 T. N. G. Borhani, A. Azarpour, V. Akbari, S. R. Wan Alwi, Z. A. Manan, Int. J. Greenhouse Gas Control 2015, 41, 142–162. DOI: https://doi.org/10.1016/j.ijggc.2015.06.026
- 4 R. Sabouni, H. Kazemian, S. Rohani, Environ. Sci. Pollut. Res. 2014, 21, 5427–5449. DOI: https://doi.org/10.1007/s11356-013-2406-2
- 5 M. Shokrollahi Yancheshmeh, H. R. Radfarnia, M. C. Iliuta, Chem. Eng. J. 2015, 283, 420–444. DOI: https://doi.org/10.1016/j.cej.2015.06.060
- 6 D. Kussainova, D. Shah, Sep. Purif. Technol. 2019, 231, 115931. DOI: https://doi.org/10.1016/j.seppur.2019.115931
- 7 M. K. Mondal, H. K. Balsora, P. Varshney, Energy 2012, 46, 431–441. DOI: https://doi.org/10.1016/j.energy.2012.08.006
- 8 H. Yang et al., J. Environ. Sci. 2008, 20, 14–27. DOI: https://doi.org/10.1016/S1001-0742(08)60002-9
- 9 O. G. Brakstad et al., Int. J. Greenhouse Gas Control 2012, 10, 271–277. DOI: https://doi.org/10.1016/j.ijggc.2012.06.016
- 10 A. Chremos, E. Forte, V. Papaioannou, A. Galindo, G. Jackson, C. S. Adjiman, Fluid Phase Equilib. 2016, 407, 280–297. DOI: https://doi.org/10.1016/j.fluid.2015.07.052
- 11 C. Dinca, J. Cleaner Prod. 2016, 112, 1136–1149. DOI: https://doi.org/10.1016/j.jclepro.2015.06.051
- 12 G. Kim, W. Choi, C. Lee, K. Lee, Biochem. Eng. J. 2013, 78, 18–23. DOI: https://doi.org/10.1016/j.bej.2013.02.010
- 13 A. Shojaeian, A. Haghtalab, J. Mol. Liq. 2013, 187, 218–225. DOI: https://doi.org/10.1016/j.molliq.2013.07.016
- 14 H. F. Hizaddin, M. K. Hadj-kali, I. M. Alnashef, F. S. Mjalli, M. A. Hashim, J. Supercrit. Fluids 2015, 100, 184–193. DOI: https://doi.org/10.1016/j.supflu.2015.02.009
- 15 F. Karadas, M. Atilhan, S. Aparicio, Energy Fuels 2010, 15, 5817–5828. DOI: https://doi.org/10.1021/ef1011337
- 16 M. Ramdin, T. W. De Loos, T. J. H. Vlugt, Ind. Eng. Chem. Res. 2012, 51 (24), 8149–8177. DOI: https://doi.org/10.1021/ie3003705
- 17 R. Biczak, B. Pawłowska, P. Bałczewski, P. Rychter, J. Hazard. Mater. 2014, 274, 181–190. DOI: https://doi.org/10.1016/j.jhazmat.2014.03.021
- 18
L. Chen, M. Sharifzadeh, N. Mac Dowell, T. Welton, Green Chem.
2014, 16, 1–3.
10.1039/c3gc90049e Google Scholar
- 19 M. Hayyan, T. Aissaoui, M. Ali, M. Abdulhakim, A. Hayyan, Chem. Eng. 2015, 50, 24–30. DOI: https://doi.org/10.1016/j
- 20 G. García, M. Atilhan, S. Aparicio, Int. J. Greenhouse Gas Control 2015, 39, 62–73. DOI: https://doi.org/10.1016/j.ijggc.2015.05.004
- 21 S. Wu, A. R. Caparanga, R. B. Leron, M. Li, Thermochim. Acta 2012, 544, 1–5. DOI: https://doi.org/10.1016/j.tca.2012.05.031
- 22 Y. Dai, J. Van Spronsen, G. Witkamp, Anal. Chim. Acta 2013, 766, 61–68. DOI: https://doi.org/10.1016/j
- 23 R. Ullah, M. Atilhan, B. Anaya, M. Khraisheh, G. García, A. ElKhattat, M. Tariq, S. Aparicio, Phys. Chem. Chem. Phys. 2015, 17, 20941–20960. DOI: https://doi.org/10.1039/c5cp03364k
- 24 M. A. Kareem, F. S. Mjalli, M. A. Hashim, I. M. Alnashef, J. Chem. Eng. 2010, 55, 4632–4637. DOI: https://doi.org/10.1021/je100104v
- 25 A. Shishov, A. Bulatov, M. Locatelli, S. Carradori, V. Andruch, Microchem. J. 2017, 135, 33–38. DOI: https://doi.org/10.1016/j.microc.2017.07.015
- 26 I. U. Haq, A. Quasim, B. Lal, D. B. Zaini, Process Saf. Prog. 2022, 41, S129–S134. DOI: https://doi.org/10.1002/prs.12325
- 27 I. Ul, B. Lal, D. B. Zaini, J. Mol. Liq. 2022, 349, 118214. DOI: https://doi.org/10.1016/j.molliq.2021.118214
- 28 Q. Zhang, K. De Oliveira Vigier, S. Royera, F. Jérôme, Chem. Soc. Rev. 2012, 41 (21), 7108. DOI: https://doi.org/10.1039/c2cs35178a
- 29 A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. 2003, 1, 70–71. DOI: https://doi.org/10.1039/B210714G
- 30 G. A. Tabaaza, I. U. Haq, D. B. Zain, B. Lal, Process Saf. Prog. 2022, 41, S135–S140. DOI: https://doi.org/10.1002/prs.12328
- 31 C. Mukesh, D. Mondal, M. Sharma, K. Prasad, Carbohydr. Polym. 2014, 103, 466–471. DOI: https://doi.org/10.1016/j.carbpol.2013.12.082
- 32
I. U. Haq et al., Environ. Chem. Lett.
2022, 20, 2165–2188. DOI: https://doi.org/10.1007/s10311-021-01359-9
10.1007/s10311?021?01359?9 Google Scholar
- 33 Q. Q. Xiong, J. P. Tu, X. Ge, X. L. Wang, C. D. Gu, J. Power Sources 2015, 274, 1–7. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.020
- 34 L. Gu, W. Huang, S. Tang, S. Tian, X. Zhang, Chem. Eng. J. 2014, 259, 647–652. DOI: https://doi.org/10.1016/j.cej.2014.08.026
- 35 A. Hayyan, M. Ali, M. Hayyan, F. S. Mjalli, I. M. Alnashef, J. Cleaner Prod. 2014, 65, 246–251. DOI: https://doi.org/10.1016/j.jclepro.2013.08.031
- 36 E. Ali, M. K. Hadj-kali, S. Mulyono, I. Alnashef, Chem. Eng. Res. Des. 2014, 92, 1898–1906. DOI: https://doi.org/10.1016/j.cherd.2014.02.004
- 37 K. Kow, K. Sirat, Chin. Chem. Lett. 2015, 26, 1311–1314. DOI: https://doi.org/10.1016/j.cclet.2015.05.049
- 38 J. Lu et al., J. Mol. Liq. 2015, 211, 1–6. DOI: https://doi.org/10.1016/j.molliq.2015.06.059
- 39 M. Hayyan et al., Chemosphere 2013, 90, 2193–2195. DOI: https://doi.org/10.1016/j.chemosphere.2012.11.004
- 40 Z. Huang, B. Wu, Q. Wen, T. Yang, Z. Yang, J. Chem. Technol. Biotechnol. 2014, 89, 1975–1981. DOI: https://doi.org/10.1002/jctb.4285
- 41 V. Sivabalan, J. K. Sahith, B. Lal, in Proc. of the Third Int. Conf. on Separation Technology 2020 (ICoST 2020), Advances in Engineering Research, Vol. 200, Atlantis Press, Dordrecht, The Netherlands 2020, 119–124.
- 42 T. Altamash, M. S. Nasser, Y. Elhamarnah, M. Magzoub, ChemistrySelect 2017, 2 (24), 7278–7295. DOI: https://doi.org/10.1002/slct.201701223
- 43 T. Aissaoui, I. M. Alnashef, Y. Benguerba, J. Nat. Gas Sci. Eng. 2016, 30, 571–577. DOI: https://doi.org/10.1016/j.jngse.2016.02.007
- 44 S. L. Perkins, P. Painter, C. M. Colina, J. Phys. Chem. B 2013, 117 (35), 10250–10260.
- 45 T. Aissaoui, J. Chem. Mol. Eng. 2017, 11, 54007.
- 46 A. P. Abbott, G. Capper, D. L. Davies, R. Rasheed, V. Uni, L. Le, Inorg. Chem. 2004, 43 (11), 3447–3452.
- 47 L. Bmigacl, Inorg. Chem. 2002, 41, 331–335.
- 48
D. Coelhode Andrade, S. Aquino Monteiro, J. Merib, Adv. Sample Prep.
2022, 1, 100007. DOI: https://doi.org/10.1016/j.sampre.2022.100007
10.1016/j.sampre.2022.100007 Google Scholar
- 49 A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, Chem. – Eur. J. 2004, 10 (15), 3769–3774. DOI: https://doi.org/10.1002/chem.200400127
- 50 M. E. Di Pietro, A. Mele, J. Mol. Liq. 2021, 338, 116597.
- 51 D. O. Abranches, M. A. R. Martins, L. P. Silva, A. Schaeffer, S. P. Pinho, J. A. P. Coutinho, Chem. Commun. 2019, 55 (69), 10253–10256. DOI: https://doi.org/10.1039/C9CC04846D
- 52 L. Liu, C. Zhao, J. Xu, Y. Li, Appl. Catal., B 2015, 179, 489–499. DOI: https://doi.org/10.1016/j.apcatb.2015.06.006
- 53 M. Pishahang, Y. Larring, M. McCann, R. Bredesen, Ind. Eng. Chem. Res. 2014, 53 (26), 10549–10556. DOI: https://doi.org/10.1021/ie500928m
- 54 P. Luis, T. Van Gerven, B. Van Der Bruggen, Prog. Energy Combust. Sci. 2012, 38, 419–448. DOI: https://doi.org/10.1016/j.pecs.2012.01.004
- 55 D. Figueroa, T. Fout, S. Plasynski, H. Mcilvried, R. D. Srivastava, Int. J. Greenhouse Gas Control 2008, 2, 9–20. DOI: https://doi.org/10.1016/S1750-5836(07)00094-1
- 56 Z. Niu, Y. Guo, Q. Zeng, W. Lin, Ind. Eng. Chem. Res. 2012, 51 (14), 5309–5319.
- 57 L. F. Zubeir, M. H. M. Lacroix, M. C. Kroon, J. Phys. Chem. B 2014, 118, 14429–14441. DOI: https://doi.org/10.1021/jp5089004
- 58 J. Lu et al., Appl. Energy 2014, 115, 573–581. DOI: https://doi.org/10.1016/j.apenergy.2013.10.045
- 59 J. D. Mota-Morales, R. J. Sánchez-leija, A. Carranza, J. A. Pojman, G. Luna-Bárcenas, Prog. Polym. Sci. 2018, 78, 139–153. DOI: https://doi.org/10.1016/j.progpolymsci.2017.09.005
- 60 T. Altamash, M. Atilhan, A. Aliyan, R. Ullah, M. Nasser, S. Aparicio, Chem. Eng. Technol. 2017, 40, 778–790. DOI: https://doi.org/10.1002/ceat.201600475
- 61 M. Yao, H. Wang, Z. Zheng, Y. Yue, Fuel 2010, 89, 2191–2201. DOI: https://doi.org/10.1016/j.fuel.2010.04.008
- 62 S. E. E. Warrag, C. J. Peters, M. C. Kroon, Curr. Opin. Green Sustainable Chem. 2017, 5, 55–60. DOI: https://doi.org/10.1016/j.cogsc.2017.03.013
- 63 R. Haghbakhsh, S. Raeissi, Chem. Eng. 2019, 7, 103411. DOI: https://doi.org/10.1016/j.jece.2019.103411
- 64 T. Aissaoui, I. M. Alnashef, U. A. Qureshi, Y. Benguerba, Rev. Chem. Eng. 2017, 33 (6), 523–550. DOI: https://doi.org/10.1515/revce-2016-0013
- 65 H. Ren, S. Lian, X. Wang, Y. Zhang, E. Duan, J. Cleaner Prod. 2018, 193, 802–810. DOI: https://doi.org/10.1016/j.jclepro.2018.05.051
- 66 S. Sarmad, Y. Xie, J. P. Mikkola, X. Ji, New J. Chem. 2017, 41 (1), 290–301. DOI: https://doi.org/10.1039/C6NJ03140D
- 67 A. Kamgar, S. Mohsenpour, F. Esmaeilzadeh, J. Mol. Liq. 2017, 247, 70–74. DOI: https://doi.org/10.1016/j.molliq.2017.09.101
- 68 D. Deng, Y. Jiang, X. Liu, Z. Zhang, N. Ai, J. Chem. Thermodyn. 2016, 103, 212–217. DOI: https://doi.org/10.1016/j.jct.2016.08.015
- 69 Y. Chen, N. Ai, G. Li, H. Shan, Y. Cui, D. Deng, J. Chem. Eng. Data 2014, 59 (4), 1247–1253.
- 70 N. Ra, N. J. Nicholas, Y. Wu, K. A. Mumford, S. E. Kentish, W. Stevens, J. Chem. Eng. 2015, 60 (11), 3246–3252. DOI: https://doi.org/10.1021/acs.jced.5b00492
- 71 Y. Xie, H. Dong, S. Zhang, X. Lu, X. Ji, J. Chem. Eng. Data 2014, 59 (11), 3344–3352.
- 72 M. Francisco, A. Van Den Bruinhorst, L. F. Zubeir, C. J. Peters, M. C. Kroon, Fluid Phase Equilib. 2012, 340, 77–84. DOI: https://doi.org/10.1016/j.fluid.2012.12.001
- 73 W. C. Su, D. Shan, H. Wong, M. H. Li, J. Chem. Eng. 2009, 54, 1951–1955.
- 74 T. Altamash et al., J. Mol. Liq. 2018, 256, 286–295. DOI: https://doi.org/10.1016/j.molliq.2018.02.049
- 75 F. P. Pelaquim, A. Marinho, B. Neto, I. Angela, L. Dalmolin, M. Conceic, Ind. Eng. Chem. Res. 2021, 60, 8607–8620. DOI: https://doi.org/10.1021/acs.iecr.1c00947
- 76 S. Maneshdavi, S. M. Peyghambarzadeh, S. Sayyaki, S. Azizi, J. Chem. Pet. Eng. 2020, 54, 57–72. DOI: https://doi.org/10.22059/jchpe.2020.284101.1289
- 77 M. B. Haider, R. Kumar, Sep. Purif. Technol. 2020, 248, 117055. DOI: https://doi.org/10.1016/j.seppur.2020.117055
- 78 M. C. K. M. Francisco, A. Van Den Bruinhorst, L. F. Zubeir, C. J. Peters, Fluid Phase Equilib. 2013, 340, 77–84.
- 79 I. Adeyemi, M. R. M. Abu-zahra, I. Alnashef, Energy Procedia 2017, 105, 1394–1400. DOI: https://doi.org/10.1016/j.egypro.2017.03.519
- 80 J. Jacquemin, M. F. C. Gomes, P. Husson, V. Majer, J. Chem. Thermodyn. 2006, 38, 490–502. DOI: https://doi.org/10.1016/j.jct.2005.07.002
- 81 M. Althuluth, M. C. Kroon, C. J. Peters, J. Supercrit. Fluids 2017, 128, 145–148. DOI: https://doi.org/10.1016/j.supflu.2017.05.021
- 82 X. Li, M. Hou, B. Han, X. Wang, L. Zou, J. Chem. Eng. 2008, 53, 548–550.
- 83 J. Jacquemin, P. Husson, A. A. H. Padua, V. Majer, Green Chem. 2006, 8, 172–180. DOI: https://doi.org/10.1039/b513231b
- 84 N. Schaeffer, M. A. R. Martins, C. M. S. S. Neves, S. P. Pinho, J. A. P. Coutinho, Chem. Commun. 2018, 54, 8104. DOI: https://doi.org/10.1039/C8CC04152K
- 85 C. Marques, L. Igarashi-Mafra, P. Coutinho, M. R. Mafra, Sep. Purif. Technol. 2021, 258, 117975. DOI: https://doi.org/10.1016/j.seppur.2020.117975
- 86 S. Sarmad, D. Nikjoo, J. Mikkola, J. Mol. Liq. 2020, 309, 113159. DOI: https://doi.org/10.1016/j.molliq.2020.113159
- 87 K. Shahbaz, S. Baroutian, F. S. Mjalli, M. A. Hashim, I. M. Alnashef, Thermochim. Acta 2012, 527, 59–66. DOI: https://doi.org/10.1016/j.tca.2011.10.010
- 88 C. Lin, R. B. Leron, A. R. Caparanga, M. Li, J. Chem. Thermodyn. 2014, 68, 216–220. DOI: https://doi.org/10.1016/j.jct.2013.08.029
- 89
X. Luo et al., Angew. Chem., Int. Ed.
2014, 127, 7173–7177. DOI: https://doi.org/10.1002/ange.201400957
10.1002/ange.201400957 Google Scholar
- 90 K. Zhang, S. Ren, X. Yang, Y. Hou, W. Wu, Y. Bai, Chem. Eng. J. 2017, 327, 128–134.