Additive-Induced Selective Crystallization of the Elusive Form-II of γ-Aminobutyric Acid
Lingyu Wang
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Search for more papers by this authorWeiwei Tang
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Search for more papers by this authorShichao Du
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Search for more papers by this authorSonggu Wu
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Search for more papers by this authorCorresponding Author
Junbo Gong
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Correspondence: Junbo Gong ([email protected]), Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.Search for more papers by this authorLingyu Wang
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Search for more papers by this authorWeiwei Tang
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Search for more papers by this authorShichao Du
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Search for more papers by this authorSonggu Wu
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Search for more papers by this authorCorresponding Author
Junbo Gong
Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, No. 92 Weijin Road, Nankai District, 300072 Tianjin, China
Correspondence: Junbo Gong ([email protected]), Tianjin University, School of Chemical Engineering and Technology, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.Search for more papers by this authorAbstract
The impact of two structural factors of sodium carboxylate additives on their ability to induce the selective crystallization of γ-aminobutyric acid (GABA) Form-II was investigated, namely, the number of –COO− groups and the types of R groups (chain alkyl, cyclic alkyl, or phenyl). It was found that the increase of –COO− groups caused the additives lose their inducing ability. This may be attributed to the fact that the increment of hydrophilic –COO− groups results in enhanced solvation and steric effect of additives, which makes additives unable to interact with GABA effectively. Additives with different R groups all can induce Form-II but they exhibited varying inducing abilities. This could be due to the distinct results of competition between the attachment and detachment of different additives on the GABA growth end.
Supporting Information
Filename | Description |
---|---|
ceat201900639-sup-0001-misc_information.pdf405.2 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 D. Mangin, F. Puel, S. Veesler, Org. Process Res. Dev. 2009, 13 (6), 1241–1253. DOI: https://doi.org/10.1021/op900168f
- 2 A. J. Cruz-Cabeza, S. M. Reutzel-Edens, J. Bernstein, Chem. Soc. Rev. 2015, 44 (23), 8619–8635. DOI: https://doi.org/10.1039/c5cs00227c
- 3 A. Llinàs, J. M. Goodman, Drug Discov. Today 2008, 13 (5), 198–210. DOI: https://doi.org/10.1016/j.drudis.2007.11.006
- 4 M. Kitamura, Crystengcomm 2009, 11 (6), 949–964. DOI: https://doi.org/10.1039/b809332f
- 5 M. Kitamura, S. Hironaka, Cryst. Growth Des. 2006, 6 (5), 1214–1218. DOI: https://doi.org/10.1021/cg050635f
- 6 M. Jim, K. J. Kim, Chem. Eng. Technol. 2012, 35 (6), 995–1002. DOI: https://doi.org/10.1002/ceat.201100717
- 7 T. Threlfall, Org. Process Res. Dev. 2000, 4 (5), 384–390. DOI: https://doi.org/10.1021/op000058y
- 8 S. Arnold, B. A. Garetz, A. S. Myerson, J. E. Aber, Phys. Rev. Lett. 2005, 94 (14), 145503. DOI: https://doi.org/10.1103/PhysRevLett.94.145503
- 9 Y. Ike, I. Hirasawa, Chem. Eng. Technol. 2018, 41 (6), 1093–1097. DOI: https://doi.org/10.1016/j.jcrysgro.2008.08.002
- 10 Y. Lee, I. S. Lee, S. S. Dette, J. Boerner, A. S. Myerson, J. Am. Chem. Soc. 2005, 127 (43), 14982–14983. DOI: https://doi.org/10.1021/ja055416x
- 11 G. Bolla, A. S. Myerson, Crystengcomm 2018, 20 (15), 2084–2088. DOI: https://doi.org/10.1039/C8CE00272J
- 12 R. J. Davey, N. Blagden, G. D. Potts, R. Docherty, J. Am. Chem. Soc. 1997, 119 (7), 1767–1772. DOI: https://doi.org/10.1021/ja9626345
- 13 X. He, J. G. Stowell, K. R. Morris, R. R. Pfeiffer, H. Li, G. P. Stahly, S. R. Byrn, Cryst. Growth Des. 2001, 1 (4), 305–312. DOI: https://doi.org/10.1021/cg0055225
- 14 Y. Mo, L. Dang, H. Wei, Ind. Eng. Chem. Res. 2011, 50 (18), 10385–10392. DOI: https://doi.org/10.1021/ie102152d
- 15 J. F. B. Black, A. J. Cruz-Cabeza, R. J. Davey, R. D. Willacy, A. Yeoh, Cryst. Growth Des. 2018, 18 (12), 7518–7525. DOI: https://doi.org/10.1021/acs.cgd.8b01325
- 16
E. H. Lee, Asian J. Pharm. Sci.
2014, 9 (4), 163–175. DOI: https://doi.org/10.1016/j.ajps.2014.05.002
10.1016/j.ajps.2014.05.002 Google Scholar
- 17 D. A. McCormick, J. Neurophysiol. 1989, 62 (5), 1018–1027. DOI: https://doi.org/10.1152/jn.1989.62.5.1018
- 18 C. G. Ting Wong, T. Bottiglieri, O. C. Snead, Ann. Neurol. 2003, 54 (6), S3–S12. DOI: https://doi.org/10.1002/ana.10696
- 19 M. Diana, J. Quílez, M. Rafecas, J. Funct. Foods 2014, 10, 407–420. DOI: https://doi.org/10.1016/j.jff.2014.07.004
- 20 K. Tomita, H. Higashi, T. Fujiwara, Chem. Soc. Jpn. 1973, 46 (7), 2199–2204. DOI: https://doi.org/10.1246/bcsj.46.2199
- 21 A. J. Dobson, R. E. Gerkin, Acta Crystallogr. Sect. C 1996, 52 (12), 3075–3078. DOI: https://doi.org/10.1107/S0108270196010001
- 22 J. Vamecq, Y. Feutelais, P. Maurois, M. Sghaier, E. Dichi, M. German-Fattal, C. Herrenknecht, P. Gressens, R. Cecchelli, L. Dehouck, J. P. Stables, N. Pages, B. Legendre, P. Bac, Med. Chem. Res. 2009, 18 (4), 255–267. DOI: https://doi.org/10.1007/s00044-008-9124-1
- 23 F. P. A. Fabbiani, G. Buth, D. C. Levendis, A. J. Cruz-Cabeza, Chem. Commun. 2014, 50 (15), 1817–1819. DOI: https://doi.org/10.1039/C3CC48466A
- 24 L. Wang, W. Tang, S. Du, S. Xu, P. Shi, S. Wu, J. Gong, Cryst. Growth Des. 2019, 19 (7), 3825–3833. DOI: https://doi.org/10.1021/acs.cgd.9b00288
- 25 U. C. Singh, P. A. Kollman, J. Comput. Chem. 1984, 5 (2), 129–145. DOI: https://doi.org/10.1002/jcc.540050204
- 26 P. Sanphui, G. Bolla, Cryst. Growth Des. 2018, 18 (9), 5690–5711. DOI: https://doi.org/10.1021/acs.cgd.8b00646
- 27 S. K. Poornachary, P. S. Chow, R. B. H. Tan, Cryst. Growth Des. 2008, 8 (1), 179–185. DOI: https://doi.org/10.1021/cg060570w
- 28 E. Staab, L. Addadi, L. Leiserowitz, M. Lahav, Adv. Mater. 1990, 2 (1), 40–43. DOI: https://doi.org/10.1002/adma.19900020108
- 29 I. Weissbuch, L. Leisorowitz, M. Lahav, Adv. Mater. 1994, 6 (12), 952–956. DOI: https://doi.org/10.1002/adma.19940061211
- 30 P. K. Thallapally, R. K. R. Jetti, A. K. Katz, H. L. Carrell, K. Singh, K. Lahiri, S. Kotha, R. Boese, G. R. Desiraju, Angew. Chem. Int. Ed. 2004, 43 (9), 1149–1155. DOI: https://doi.org/10.1002/anie.200352253
- 31 W. M. Meylan, P. H. Howard, Perspect. Drug Discovery Des. 2000, 19 (1), 67–84. DOI: https://doi.org/10.1023/A:1008715521862
- 32 M. Yizhak, The Properties of Solvents, Wiley, New York 1998.