Enhanced Hydrogen Generation from Empty Fruit Bunches by Charcoal Addition into a Downdraft Gasifier
Minhaj Uddin Monir
Jashore University of Science and Technology, Department of Petroleum and Mining Engineering, 7408 Jashore, Bangladesh
Search for more papers by this authorCorresponding Author
Azrina Abd Aziz
Universiti Malaysia Pahang, Faculty of Civil Engineering Technology, 26300 Gambang, Malaysia
Universiti Malaysia Pahang, Earth Resources and Sustainability Centre, 26300 Gambang, Malaysia
Correspondence: Azrina Abd Aziz ([email protected]), Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Malaysia.Search for more papers by this authorDai-Viet N. Vo
Nguyen Tat Thanh University, Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), 300A Nguyen Tat Thanh, District 4, 755414 Ho Chi Minh City, Vietnam
Search for more papers by this authorFatema Khatun
Universiti Malaysia Pahang, Faculty of Civil Engineering Technology, 26300 Gambang, Malaysia
Search for more papers by this authorMinhaj Uddin Monir
Jashore University of Science and Technology, Department of Petroleum and Mining Engineering, 7408 Jashore, Bangladesh
Search for more papers by this authorCorresponding Author
Azrina Abd Aziz
Universiti Malaysia Pahang, Faculty of Civil Engineering Technology, 26300 Gambang, Malaysia
Universiti Malaysia Pahang, Earth Resources and Sustainability Centre, 26300 Gambang, Malaysia
Correspondence: Azrina Abd Aziz ([email protected]), Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Malaysia.Search for more papers by this authorDai-Viet N. Vo
Nguyen Tat Thanh University, Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), 300A Nguyen Tat Thanh, District 4, 755414 Ho Chi Minh City, Vietnam
Search for more papers by this authorFatema Khatun
Universiti Malaysia Pahang, Faculty of Civil Engineering Technology, 26300 Gambang, Malaysia
Search for more papers by this authorAbstract
Hydrogen production by co-gasification of empty fruit bunches of palm oil could be enhanced by adding charcoal. Physiochemical characterization of raw feedstocks was performed to determine their exergy potentiality. The raw feedstocks, gasified charcoal, and the end product of produced gas were analyzed by different techniques. Gasification experiments were performed using a pilot-scale downdraft gasifier. The heating value, composition of product gas, yield of hydrogen, and exergy efficiency were used to verify the improvement of hydrogen production during the co-gasification process. Charcoal with empty fruit bunches of palm oil leads to a much higher yield of hydrogen than lower charcoal ratios or solely empty fruit bunches. This enhanced hydrogen fuel can contribute to future energy demand.
Supporting Information
Filename | Description |
---|---|
ceat201900547-sup-0001-misc_information.pdf257.5 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
O. Konur, Bioenergy and Biofuels, CRC Press, Boca Raton, FL
2018.
10.1201/9781351228138 Google Scholar
- 2 A. Azzuni, C. Breyer, Wiley Interdiscip. Rev.: Energy Environ. 2018, 7 (1), e268.
- 3
S. Shankar, in Principles and Applications of Environmental Biotechnology for a Sustainable Future (Ed: R. L. Singh), Springer Singapore, Singapore
2017, 293–314.
10.1007/978-981-10-1866-4_9 Google Scholar
- 4
J. G. Gupta, S. De, A. Gautam, A. Dhar, A. Pandey, in Sustainable Energy and Transportation: Technologies and Policy (Eds: A. Gautam, S. De, A. Dhar, J. G. Gupta, A. Pandey), Springer Singapore, Singapore
2018, 3–7.
10.1007/978-981-10-7509-4_1 Google Scholar
- 5
J. Lindorfer, G. Reiter, R. Tichler, H. Steinmüller, in Managing Global Warming (Ed: T. Letcher), Academic Press, New York
2019, 419–453.
10.1016/B978-0-12-814104-5.00014-4 Google Scholar
- 6
M. Wang, G. Wang, Z. Sun, Y. Zhang, D. Xu, Global Energy Interconnection
2019, 2 (5), 436–443.
10.1016/j.gloei.2019.11.019 Google Scholar
- 7
V. Singh, D. Das, in Science and Engineering of Hydrogen-Based Energy Technologies (Ed: P. E. V. de Miranda), Academic Press, New York
2019, 123–164.
10.1016/B978-0-12-814251-6.00003-4 Google Scholar
- 8 H. Balat, E. Kırtay, Int. J. Hydrogen Energy 2010, 35 (14), 7416–7426. DOI: https://doi.org/10.1016/j.ijhydene.2010.04.137
- 9 I. P. Jain, Int. J. Hydrogen Energy 2009, 34 (17), 7368–7378. DOI: https://doi.org/10.1016/j.ijhydene.2009.05.093
- 10 B. Cabuk, G. Duman, J. Yanik, H. Olgun, Int. J. Hydrogen Energy 2019, in press.
- 11
M. U. Monir, A. Yousuf, A. A. Aziz, in Lignocellulosic Biomass to Liquid Biofuels (Eds: A. Yousuf, D. Pirozzi, F. Sannino), Academic Press, New York
2020, 195–216.
10.1016/B978-0-12-815936-1.00006-X Google Scholar
- 12 M. U. Monir, A. Abd Aziz, A. Yousuf, M. Z. Alam, Int. J. Hydrogen Energy 2019, in press. DOI: https://doi.org/10.1016/j.ijhydene.2019.07.246
- 13 J. Yang, X. Xu, S. Liang, R. Guan, H. Li, Y. Chen, B. Liu, J. Song, W. Yu, K. Xiao, Int. J. Hydrogen Energy 2018, 43 (16), 7795–7807.
- 14
M. U. Monir, A. Abd Aziz, R. A. Kristanti, A. Yousuf, Waste Biomass Valorization
2018, 11, 635–651. DOI: https://doi.org/10.1007/s12649-018-0513-5
10.1007/s12649-018-0513-5 Google Scholar
- 15 A. K. Hussein, Renewable Sustainable Energy Rev. 2015, 42, 460–476.
- 16
M. U. Monir, A. Yousuf, A. A. Aziz, S. M. Atnaw, Indian J. Sci. Technol.
2017, 10 (6), 1–4. DOI: https://doi.org/10.17485/ijst/2017/v10i6/111217
10.17485/ijst/2017/v10i6/111217 Google Scholar
- 17 A. Gradel, R. Honke, J. A. Wünning, T. Plessing, A. Jess, Chem. Eng. Technol. 2019, 42, 1895–1906. DOI: https://doi.org/10.1002/ceat.201800640
- 18 S. Fremaux, S.-M. Beheshti, H. Ghassemi, R. Shahsavan-Markadeh, Energy Convers. Manage. 2015, 91, 427–432. DOI: https://doi.org/10.1016/j.enconman.2014.12.048
- 19
M. A. Rosen, S. Koohi-Fayegh, Energy Ecol. Environ.
2016, 1 (1), 10–29. DOI: https://doi.org/10.1007/s40974-016-0005-z
10.1007/s40974-016-0005-z Google Scholar
- 20 K.-Y. Show, D.-J. Lee, J.-S. Chang, Bioresour. Technol. 2011, 102 (18), 8524–8533. DOI: https://doi.org/10.1016/j.biortech.2011.04.055
- 21 B. Dou, H. Zhang, Y. Song, L. Zhao, B. Jiang, M. He, C. Ruan, H. Chen, Y. Xu, Sustainable Energy Fuels 2019, 3 (2), 314–342.
- 22 L. J. R. Nunes, T. P. Causer, D. Ciolkosz, Renewable Sustainable Energy Rev. 2020, 120, 109658. DOI: https://doi.org/10.1016/j.rser.2019.109658
- 23 M. Ozturk, N. Saba, V. Altay, R. Iqbal, K. R. Hakeem, M. Jawaid, F. H. Ibrahim, Renewable Sustainable Energy Rev. 2017, 79, 1285–1302. DOI: https://doi.org/10.1016/j.rser.2017.05.111
- 24 S. K. Bhatia, H.-S. Joo, Y.-H. Yang, Energy Convers. Manage. 2018, 177, 640–660.
- 25 J. Sadhukhan, E. Martinez-Hernandez, R. J. Murphy, D. K. S. Ng, M. H. Hassim, K. Siew Ng, W. Yoke Kin, I. F. M. Jaye, M. Y. Leung Pah Hang, V. Andiappan, Renewable Sustainable Energy Rev. 2018, 81, 1966–1987. DOI: https://doi.org/10.1016/j.rser.2017.06.007
- 26 E. Derman, R. Abdulla, H. Marbawi, M. K. Sabullah, Renewable Energy 2018, 129, 285–298. DOI: https://doi.org/10.1016/j.renene.2018.06.003
- 27 S. M. Atnaw, S. A. Sulaiman, S. Yusup, Energy 2013, 61, 491–501. DOI: https://doi.org/10.1016/j.energy.2013.09.039
- 28 M. A. Masmoudi, N. Grioui, M. Sahraoui, K. Halouani, Modeling of charcoal gasification in downdraft gasifier: Effect of gasifying agent, 5th Int. Conf. on Advances in Mechanical Engineering and Mechanics (ICAMEM2010), Hammamet, Tunisia 2010.
- 29 S. Wang, G. Dai, H. Yang, Z. Luo, Prog. Energy Combust. Sci. 2017, 62, 33–86. DOI: https://doi.org/10.1016/j.pecs.2017.05.004
- 30
M. U. Monir, A. Abd Aziz, R. A. Kristanti, A. Yousuf, Bioresour. Technol. Rep.
2018, 1, 39–49. DOI: https://doi.org/10.1016/j.biteb.2018.02.001
10.1016/j.biteb.2018.02.001 Google Scholar
- 31 M. U. Monir, A. A. Azrina, R. A. Kristanti, A. Yousuf, Biomass Bioenergy 2018, 119, 335–345. DOI: https://doi.org/10.1016/j.biombioe.2018.10.006
- 32 A. Hussein, F. Larachi, D. Ziegler, H. Alamdari, Biomass Bioenergy 2016, 90, 101–113.
- 33 N. Johar, I. Ahmad, A. Dufresne, Ind. Crops Products 2012, 37 (1), 93–99.
- 34 Y.-h. Qin, Q.-q. Han, Z.-b. Zhao, Z.-y. Du, J. Feng, W.-y. Li, S. V. Vassilev, C. G. Vassileva, Fuel 2017, 202, 556–562. DOI: https://doi.org/10.1016/j.fuel.2017.04.072
- 35 K. H. Kim, I. Y. Eom, S. M. Lee, D. Choi, H. Yeo, I.-G. Choi, J. W. Choi, J. Anal. Appl. Pyrolysis 2011, 92 (1), 2–9. DOI: https://doi.org/10.1016/j.jaap.2011.04.002
- 36 E. Longhin, M. Gualtieri, L. Capasso, R. Bengalli, S. Mollerup, J. A. Holme, J. Øvrevik, S. Casadei, C. Di Benedetto, P. Parenti, M. Camatini, Environ. Pollut. 2016, 215, 366–375. DOI: https://doi.org/10.1016/j.envpol.2016.05.015
- 37 W. C. Ng, S. You, R. Ling, K. Y.-H. Gin, Y. Dai, C.-H. Wang, Energy 2017, 139 (Suppl. C), 732–742. DOI: https://doi.org/10.1016/j.energy.2017.07.165
- 38 F. Y. Hagos, A. R. A. Aziz, S. A. Sulaiman, Asian J. Sci. Res. 2013, 6 (2), 187–196.
- 39 S. K. Sansaniwal, K. Pal, M. A. Rosen, S. K. Tyagi, Renewable and Sustainable Energy Reviews 2017, 72, 363–384. DOI: https://doi.org/10.1016/j.rser.2017.01.038
- 40 V. S. Sikarwar, M. Zhao, P. S. Fennell, N. Shah, E. J. Anthony, Progress in Energy and Combustion Science 2017, 61, 189–248. DOI: https://doi.org/10.1016/j.pecs.2017.04.001
- 41 G. Oh, H. W. Ra, S. M. Yoon, T. Y. Mun, M. W. Seo, J. G. Lee, S. J. Yoon, Applied Thermal Engineering 2018, 129 (Supplement C), 657–664. DOI: https://doi.org/10.1016/j.applthermaleng.2017.10.055