Bimetallic Ru-Fe Nanoparticles Supported on Carbon Nanotubes for Ammonia Decomposition and Synthesis
Cai Chen
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorYiwen Chen
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorArshid M. Ali
King Abdulaziz University, Department of Chemical and Materials Engineering, 72523 Jeddah, Saudi Arabia
Search for more papers by this authorWenjia Luo
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorJie Wen
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorLianhong Zhang
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorCorresponding Author
Hui Zhang
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Correspondence: Hui Zhang ([email protected]), College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.Search for more papers by this authorCai Chen
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorYiwen Chen
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorArshid M. Ali
King Abdulaziz University, Department of Chemical and Materials Engineering, 72523 Jeddah, Saudi Arabia
Search for more papers by this authorWenjia Luo
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorJie Wen
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorLianhong Zhang
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Search for more papers by this authorCorresponding Author
Hui Zhang
Southwest Petroleum University, College of Chemistry and Chemical Engineering, 610500 Chengdu, China
Correspondence: Hui Zhang ([email protected]), College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.Search for more papers by this authorAbstract
Alloy catalysts can achieve superior performance to single metal while reducing the cost by fine-tuning the composition and morphology. Bimetallic Ru-Fe nanoparticles were synthesized via liquid-phase reduction method followed by impregnation with multiwall carbon nanotubes (CNTs) to prepare Ru-Fe/CNTs catalysts. The Ru3Fe/CNTs catalyst yields a superior catalytic stability for ammonia decomposition compared to the Ru/CNTs catalyst. Hence, the ammonia synthesis rate of the Ru3Fe/CNTs catalyst was significantly higher than that of Ru/CNTs catalyst. The potential of bimetallic catalysts with reasonable composition and proportion will expand the research of efficient catalysts for ammonia decomposition and synthesis.
Supporting Information
Filename | Description |
---|---|
ceat201900508-sup-0001-misc_information.pdf677.1 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 R. Metkemeijer, P. Achard, Int. J. Hydrogen Energy 1994, 19 (6), 535–542. DOI: https://doi.org/10.1016/0360-3199(94)90009-4
- 2 R. Metkemeijer, P. Achard, J. Power Sources 1994, 49 (1–3), 271–282. DOI: https://doi.org/10.1016/0378-7753(93)01822-Y
- 3 A. S. Chellappa, C. M. Fischer, W. J. Thomson, Appl. Catal., A 2002, 227 (1–2), 231–240. DOI: https://doi.org/10.1016/S0926-860x(01)00941-3
- 4 T. V. Choudhary, D. W. Goodman, Catal. Lett. 1999, 59 (2–4), 93–94. DOI: https://doi.org/10.1023/A:1019008202235
- 5 M. Gorlin, P. Chernev, J. F. de Araujo, T. Reier, S. Dresp, B. Paul, R. Krahnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 2016, 138 (17), 5603–5614. DOI: https://doi.org/10.1021/jacs.6b00332
- 6 X. Z. Duan, G. Qian, X. G. Zhou, D. Chen, W. K. Yuan, Chem. Eng. J. 2012, 207, 103–108. DOI: https://doi.org/10.1016/j.cej.2012.05.100
- 7 S. K. Singh, Q. A. Xu, Inorg. Chem. 2010, 49 (13), 6148–6152. DOI: https://doi.org/10.1021/ic1007654
- 8 S. Ren, F. Huang, J. Zheng, S. J. Chen, H. Zhang, Int. J. Hydrogen Energy 2017, 42 (8), 5105–5113. DOI: https://doi.org/10.1016/j.ijhydene.2016.11.010
- 9 S. F. Yin, B. Q. Xu, X. P. Zhou, C. T. Au, Appl. Catal., A 2004, 277 (1–2), 1–9. DOI: https://doi.org/10.1016/j.apcata.2004.09.020
- 10 S. J. Wang, S. F. Yin, L. Li, B. Q. Xu, C. F. Ng, C. T. Au, Appl. Catal., B 2004, 52 (4), 287–299. DOI: https://doi.org/10.1016/j.apcatb.2004.05.002
- 11 J. C. Ganley, F. S. Thomas, E. G. Seebauer, R. I. Masel, Catal. Lett. 2004, 96 (3–4), 117–122. DOI: https://doi.org/10.1023/B:CATL.0000030108.50691.d4
- 12 A. K. Hill, L. Torrente-Murciano, Appl. Catal., B 2015, 172, 129–135. DOI: https://doi.org/10.1016/j.apcatb.2015.02.011
- 13 H. Zhang, Q. M. Gong, S. Ren, M. A. Arshid, W. Chu, C. Chen, Catal. Sci. Technol. 2018, 8 (3), 907–915. DOI: https://doi.org/10.1039/c7cy02270k
- 14 H. Zhang, Y. A. Alhamed, W. Chu, Z. B. Ye, A. AlZahrani, L. Petrov, Appl. Catal., A 2013, 464, 156–164. DOI: https://doi.org/10.1016/j.apcata.2013.05.046
- 15 W. Q. Zheng, J. Zhang, Q. J. Ge, H. Y. Xu, W. Z. Li, Appl. Catal., B 2008, 80 (1–2), 98–105. DOI: https://doi.org/10.1016/j.apcatb.2007.11.008
- 16 Q. Su, L. L. Gu, Y. Yao, J. Zhao, W. J. Ji, W. P. Ding, C. T. Au, Appl. Catal., B 2017, 201, 451–460. DOI: https://doi.org/10.1016/j.apcatb.2016.08.051
- 17 Y. P. Li, J. Wen, A. M. Ali, M. Duan, W. Zhu, H. Zhang, C. Chen, Y. D. Li, Chem. Commun. 2018, 54 (49), 6364–6367. DOI: https://doi.org/10.1039/c8cc01884g
- 18 A. U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, J. Am. Chem. Soc. 2010, 132 (21), 7418–7428. DOI: https://doi.org/10.1021/ja101108w
- 19 M. Salciccioli, W. T. Yu, M. A. Barteau, J. G. G. Chen, D. G. Vlachos, J. Am. Chem. Soc. 2011, 133 (20), 7996–8004. DOI: https://doi.org/10.1021/ja201801t
- 20 Y. X. Li, S. Q. Liu, L. H. Yao, W. J. Ji, C. T. Au, Catal. Commun. 2010, 11 (5), 368–372. DOI: https://doi.org/10.1016/j.catcom.2009.11.003
- 21 M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely, G. J. Hutchings, Chem. Soc. Rev. 2012, 41 (24), 8099–8139. DOI: https://doi.org/10.1039/c2cs35296f
- 22 M. Ahmadi, C. H. Cui, H. Mistry, P. Strasser, B. Roldan Cuenya, ACS Nano 2015, 9 (11), 10686–10694. DOI: https://doi.org/10.1021/acsnano.5b01807
- 23 R. T. Mu, Q. A. Fu, H. Xu, H. I. Zhang, Y. Y. Huang, Z. Jiang, S. O. Zhang, D. L. Tan, X. H. Bao, J. Am. Chem. Soc. 2011, 133 (6), 1978–1986. DOI: https://doi.org/10.1021/ja109483a
- 24 D. A. Hansgen, D. G. Vlachos, J. G. G. Chen, Nature Chem. 2010, 2 (6), 484–489. DOI: https://doi.org/10.1038/Nchem.626
- 25 G. H. Wang, J. Hilgert, F. H. Richter, F. Wang, H. J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schuth, Nat. Mater. 2014, 13 (3), 294–301. DOI: https://doi.org/10.1038/Nmat3872
- 26 P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. F. Yu, Z. C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nature Chem. 2010, 2 (6), 454–460. DOI: https://doi.org/10.1038/Nchem.623
- 27 S. F. Yin, B. Q. Xu, W. X. Zhu, C. F. Ng, X. P. Zhou, C. T. Au, Catal. Today 2004, 93–5, 27–38. DOI: https://doi.org/10.1016/j.cattod.2004.05.011
- 28 S. F. Yin, B. Q. Xu, C. F. Ng, C. T. Au, Appl. Catal., B 2004, 48 (4), 237–241. DOI: https://doi.org/10.1016/j.apcatb.2003.10.013
- 29 J. Zhang, J. O. Muller, W. Q. Zheng, D. Wang, D. S. Su, R. Schlogl, Nano Lett. 2008, 8 (9), 2738–2743. DOI: https://doi.org/10.1021/nl8011984
- 30 J. Yang, D. S. He, W. X. Chen, W. Zhu, H. Zhang, S. Ren, X. Wang, Q. H. Yang, Y. Wu, Y. D. Li, ACS Appl. Mater. Interfaces 2017, 9 (45), 39450–39455. DOI: https://doi.org/10.1021/acsami.7b14134
- 31 L. Li, F. Chen, Y. Dai, J. Wu, J. L. Shao, H. Y. Li, RSC Adv. 2016, 6 (104), 102336–102342. DOI: https://doi.org/10.1039/c6ra21211e
- 32 S. F. Kurtoğlu, S. Soyer-Uzun, A. Uzun, Catal. Today 2019. DOI: https://doi.org/10.1016/j.cattod.2019.07.055
- 33 B. Lorenzut, T. Montini, M. Bevilacqua, P. Fornasiero, Appl. Catal., B 2012, 125, 409–417. DOI: https://doi.org/10.1016/j.apcatb.2012.06.011
- 34 G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6 (1), 15–50. DOI: https://doi.org/10.1016/0927-0256(96)00008-0
- 35 G. Kresse, J. Non-Cryst. Solids 1995, 193, 222–229. DOI: https://doi.org/10.1016/0022-3093(95)00355-X
- 36 G. Kresse, D. Joubert, Phys. Rev. B 1999, 59 (3), 1758–1775. DOI: https://doi.org/10.1103/PhysRevB.59.1758
- 37 P. E. Blochl, Phys. Rev. B 1994, 50 (24), 17953–17979. DOI: https://doi.org/10.1103/PhysRevB.50.17953
- 38 D. Sheppard, R. Terrell, G. Henkelman, J. Chem. Phys. 2008, 128 (13), 134106. DOI: https://doi.org/10.1063/1.2841941
- 39 G. Henkelman, H. Jonsson, J. Chem. Phys. 1999, 111 (15), 7010–7022. DOI: https://doi.org/10.1063/1.480097
- 40 H. Claus, J. Phys. Chem. Solids 1967, 28 (12), 2449–2451. DOI: https://doi.org/10.1016/0022-3697(67)90032-7
- 41 S. Dahl, A. Logadottir, R. C. Egeberg, J. H. Larsen, I. Chorkendorff, E. Tornqvist, J. K. Norskov, Phys. Rev. Lett. 1999, 83 (9), 1814–1817. DOI: https://doi.org/10.1103/PhysRevLett.83.1814
- 42 A. Logadottir, T. H. Rod, J. K. Norskov, B. Hammer, S. Dahl, C. J. H. Jacobsen, J. Catal. 2001, 197 (2), 229–231. DOI: https://doi.org/10.1006/jcat.2000.3087
- 43 A. Logadottir, J. K. Norskov, J. Catal. 2003, 220 (2), 273–279. DOI: https://doi.org/10.1016/S0021-9517(03)00156-8
- 44 K. Honkala, A. Hellman, I. N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen, J. K. Norskov, Science 2005, 307 (5709), 555–558. DOI: https://doi.org/10.1126/science.1106435
- 45 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13 (12), 5188–5192. DOI: https://doi.org/10.1103/PhysRevB.13.5188
- 46 A. Maximov, A. Zolotukhina, V. Murzin, E. Karakhanov, E. Rosenberg, Chemcatchem 2015, 7 (7), 1197–1210. DOI: https://doi.org/10.1002/cctc.201403054
- 47 J. L. Zhang, W. Sheng, C. L. Guo, W. Li, RSC Adv. 2013, 3 (43), 21062–21068. DOI: https://doi.org/10.1039/c3ra42867b
- 48 J. Zhang, M. Comotti, F. Schuth, R. Schlogl, D. S. Su, Chem. Commun. 2007, 19, 1916–1918. DOI: https://doi.org/10.1039/b700969k
- 49 S. F. Yin, Q. H. Zhang, B. Q. Xu, W. X. Zhu, C. F. Ng, C. T. Au, J. Catal. 2004, 224 (2), 384–396. DOI: https://doi.org/10.1016/j.jcat.2004.03.008
- 50 H. Zhang, Y. A. Alhamed, Y. Kojima, A. A. Al-Zahrani, H. Miyaoka, L. A. Petrov, Int. J. Hydrogen Energy 2014, 39 (1), 277–287. DOI: https://doi.org/10.1016/j.ijhydene.2013.10.004
- 51 T. V. Choudhary, C. Sivadinarayana, D. W. Goodman, Catal. Lett. 2001, 72 (3–4), 197–201. DOI: https://doi.org/10.1023/A:1009023825549
- 52 F. Chang, J. P. Guo, G. T. Wu, L. Liu, M. Zhang, T. He, P. K. Wang, P. Yu, P. Chen, RSC Adv. 2015, 5 (5), 3605–3610. DOI: https://doi.org/10.1039/c4ra12816h
- 53 M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S. W. Kim, M. Hara, H. Hosono, Nature Chem. 2012, 4 (11), 934–940. DOI: https://doi.org/10.1038/Nchem.1476
- 54 M. Hara, M. Kitano, H. Hosono, ACS Catal. 2017, 7 (4), 2313–2324. DOI: https://doi.org/10.1021/acscatal.6b03357
- 55 Y. Inoue, M. Kitano, K. Kishida, H. Abe, Y. Niwa, M. Sasase, Y. Fujita, H. Ishikawa, T. Yokoyama, M. Hara, H. Hosono, ACS Catal. 2016, 6 (11), 7577–7584. DOI: https://doi.org/10.1021/acscatal.6b01940
- 56 Z. W. Ma, S. L. Zhao, X. P. Pei, X. M. Xiong, B. Hu, Catal. Sci. Technol. 2017, 7 (1), 191–199. DOI: https://doi.org/10.1039/c6cy02089e