Influence of Shear-Thinning Rheology on the Mixing Dynamics in Taylor-Couette Flow
Neil Cagney
Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, E1 4NS London, UK
University College London, Department of Mechanical Engineering, Gower Street, WC1E 6BT London, UK
Search for more papers by this authorCorresponding Author
Stavroula Balabani
University College London, Department of Mechanical Engineering, Gower Street, WC1E 6BT London, UK
Correspondence: Stavroula Balabani ([email protected]), University College London, Department of Mechanical Engineering, Gower Street, London WC1E 6BT, UK.Search for more papers by this authorNeil Cagney
Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, E1 4NS London, UK
University College London, Department of Mechanical Engineering, Gower Street, WC1E 6BT London, UK
Search for more papers by this authorCorresponding Author
Stavroula Balabani
University College London, Department of Mechanical Engineering, Gower Street, WC1E 6BT London, UK
Correspondence: Stavroula Balabani ([email protected]), University College London, Department of Mechanical Engineering, Gower Street, London WC1E 6BT, UK.Search for more papers by this authorAbstract
Non-Newtonian rheology can have a significant effect on mixing efficiency, which remains poorly understood. The effect of shear-thinning rheology in a Taylor-Couette reactor is studied using a combination of particle image velocimetry and flow visualization. Shear-thinning is found to alter the critical Reynolds numbers for the formation of Taylor vortices and the higher-order wavy instability, and is associated with an increase in the axial wavelength. Strong shear-thinning and weak viscoelasticity can also lead to sudden transitions in wavelength as the Reynolds number is varied. Finally, it is shown that shear-thinning causes an increase in the mixing time within vortices, due to a reduction in their circulation, but enhances the axial dispersion of fluid in the reactor.
References
- 1 O. Coronado-Matutti, P. R. Souza Mendes, M. S. Carvalho, J. Fluids Eng. 2004, 126, 385.
- 2 A. Groisman, V. Steinberg, Phys. Rev. Lett. 1997, 78, 1460.
- 3 M. Jenny, S. Kiesgen de Richter, N. Louvet, S. Skali-Lami, Y. Dossmann, Phys. Rev. Fluids 2017, 2, 023302.
- 4 T. C. Niederkorn, J. M. Ottino, AIChE J. 1994, 40, 1782.
- 5 P. Coussot, J. Non-Newtonian Fluid Mech. 2014, 211, 31.
- 6 A. Groisman, V. Steinberg, Nature 2000, 405, 53.
- 7 A. Groisman, V. Steinberg, Nature 2001, 410, 905.
- 8 A. B. Metzner, R. E. Otto, AIChE J. 1957, 3, 3.
- 9 A. Fontaine, Y. Guntzburger, F. Bertrand, L. Fradette, M. C. Heuzey, Chem. Eng. Res. Des. 2013, 91, 7.
- 10 M. Cortada-Garcia, W. H. Weheliye, V. Dore, L. Mazzei, P. Angeli, Chem. Eng. Sci. 2018, 179, 133.
- 11 M. A. Fardin, C. Perge, N. Taberlet, Soft Matter 2014, 10, 3523.
- 12 C. D. Andereck, S. S. Liu, H. L. Swinney, J. Fluid Mech. 1986, 164, 155.
- 13 U. B. Holeschovsky, C. L. Cooney, AIChE J. 1991, 37, 1219.
- 14 L. Ashton, J. Dusting, E. Imomoh, S. Balabani, E. W. Blanch, Biophys. J. 2009, 96, 4231.
- 15 E. K. Hill, B. Krebs, D. G. Goodall, G. J. Howlett, D. E. Dunstan, Biomacromolecules 2006, 7, 10.
- 16 G. A. Ameer, E. A. Grovender, B. Obradovic, C. L. Cooney, R. Langer, AIChE J. 1999, 45, 633.
- 17 S. Vedantam, J. B. Joshi, Chem. Eng. Res. Des. 2006, 84, 5222.
- 18 H. R. Masuda, R. Hubacz, M. Shimoyamada, N. Ohmura, Chem. Eng. Technol. 2019, 42, 1.
- 19 S. J. Curran, R. A. Black, Chem. Eng. Sci. 2004, 59, 5859.
- 20 B. Kong, J. V. Shanks, R. D. Vigil, Biotechnol. Bioeng. 2013, 110, 2140.
- 21 B. Haut, H. B. Amor, L. Coulon, A. Jacquet, A. Halloin, Chem. Eng. Sci. 2003, 58, 777.
- 22 N. Ashrafi, Appl. Math. Modell. 2011, 35, 4407.
- 23 B. Alibenyahia, C. Lemaitre, C. Nouar, N. Ait-Messaoudene, J. Non-Newtonian Fluid Mech. 2012, 183–184, 37.
- 24 M. P. Escudier, I. W. Gouldson, D. M. Jones, Proc. R. Soc. London, Ser. A 1995, 449, 155.
- 25 G. I. Taylor, Philos. Trans. R. Soc., A 1923, 223, 289.
- 26 A. Akonur, R. M. Lueptow, Phys. Fluids 2003, 15, 947.
- 27 R. L. C. Giordano, R. C. Giordano, C. L. Cooney, Process Biochem. 2000, 35, 1093.
- 28 J. Dusting, S. Balabani, Chem. Eng. Sci. 2009, 64, 3103.
- 29 M. Nemri, S. Charton, E. Climent, Chem. Eng. Sci. 2016, 139, 109.
- 30 N. Ohmura, K. Kataoka, Y. Shibata, T. Makino, Chem. Eng. Sci. 1997, 52, 1757.
- 31 G. Desmet, H. Verelst, G. V. Baron, Chem. Eng. Sci. 1996, 51, 1299.
- 32 M. Rudman, G. Metcalfe, L. J. W. Graham, Phys. Fluids 2008, 20, 063602.
- 33 R. J. Campero, R. D. Vigil, Chem. Eng. Sci. 1997, 52, 3303.
- 34 M. Nemri, S. Cazin, S. Charton, E. Climent, Exp. Fluids 2014, 55, 1769.
- 35 E. Imomoh, J. Dusting, S. Balabani, Phys. Fluids 2010, 22, 044103.
- 36 N. Abcha, N. Latrache, F. Dumouchel, I. Mutabazi, Exp. Fluids 2008, 45, 85.
- 37 C. S. Dutcher, S. J. Muller, J. Fluid Mech. 2009, 641, 85.
- 38 M. V. Majji, S. Banerjee, J. F. Morris, J. Fluid Mech. 2018, 835, 936.
- 39 S. A. Bahrani, C. Nouar, A. Neveu, S. Becker, Congrès Français de Mècanique, Lyon, August 2015.
- 40 V. Sinevic, R. Kuboi, A. W. Nienow, Chem. Eng. Sci. 1986, 41, 2915.
- 41 A. Esser, S. Grossmann, Phys. Fluids 1998, 8, 1814.
- 42 A. Groisman, V. Steinberg, Phys. Rev. Lett. 1997, 78, 1460.
- 43 B. J. Baumertand, S. J. Muller, J. Non-Newtonian Fluid Mech. 1999, 83, 33.
- 44 F. Caton, J. Non-Newtonian Fluid Mech. 2006, 134, 148.
- 45 M. Jastrzębski, H. A. Zaidani, S. Wroņski, Rheol. Acta 1992, 31, 264.
- 46 J. A. Cole, J. Fluid Mech. 1976, 75, 1.
- 47 K. Park, G. L. Crawford, Phys. Rev. Lett. 1982, 50, 343.
- 48 G. L. Crawford, K. Park, R. J. Donnelly, Phys. Fluids 1985, 28, 7.
- 49 A. Anokur, M. Lueptow, Phys. D 2002, 167, 183.
- 50 B. M. Cetigen, N. Mohamed, J. Fluid Mech. 1993, 249, 391.
- 51 S. T. Wereley, R. M. Lueptow, J. Fluid Mech. 1998, 364, 59.