Rupture of Wetting Films Formed by Bubbles at a Quartz Surface in Cationic Surfactant Solutions
Agata Wiertel-Pochopien
Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry, ul. Niezapominajek 8, 30-239 Krakow, Poland
Search for more papers by this authorCorresponding Author
Jan Zawala
Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry, ul. Niezapominajek 8, 30-239 Krakow, Poland
Correspondence: Jan Zawala ([email protected]), Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry, ul. Niezapominajek 8, 30-239 Krakow, Poland.Search for more papers by this authorAgata Wiertel-Pochopien
Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry, ul. Niezapominajek 8, 30-239 Krakow, Poland
Search for more papers by this authorCorresponding Author
Jan Zawala
Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry, ul. Niezapominajek 8, 30-239 Krakow, Poland
Correspondence: Jan Zawala ([email protected]), Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry, ul. Niezapominajek 8, 30-239 Krakow, Poland.Search for more papers by this authorAbstract
Experimental studies were performed on the kinetics of the three-phase contact formation and bubble attachment to a quartz surface in solutions of a cationic surfactant of various concentrations. By tuning the distance between the single-bubble formation point and the quartz surface immersed in the solution, the influence of the state of the dynamic adsorption layer over a rising bubble on the mechanism of rupture of a wetting film formed was elucidated. Based on the unique methodology, allowing precise control over the initial degree of adsorption coverage at the detaching bubble, new evidence was found confirming the electrostatic character of the wetting film rupture in cationic surfactant solutions of low concentrations.
References
- 1 P. B. Kowalczuk, J. Zawala, J. Drzymala, K. Malysa, Sep. Sci. Technol. 2016, 51, 2681–2690. DOI: https://doi.org/10.1080/01496395.2016.1172640
- 2 J. Zawala, C. Karaguzel, A. Wiertel, O. Sahbaz, K. Malysa, Colloids Surf., A 2017, 523, 118–126. DOI: https://doi.org/10.1016/j.colsurfa.2017.03.063
- 3 A. Zdziennicka, B. Janczuk, Mater. Chem. Phys. 2010, 124, 569–574. DOI: https://doi.org/10.1016/j.matchemphys.2010.07.013
- 4
W. Yuhua, R. Jianwei, Int. J. Miner. Process.
2005, 77, 116–122. DOI: https://doi.org/10.1016/j.minpro.2005.03.001
10.1016/j.minpro.2005.03.001 Google Scholar
- 5 A. C. Araujo, P. R. M. Viana, A. E. C. Peres, Miner. Eng. 2005, 18, 219–224. DOI: https://doi.org/10.1016/j.mineng.2004.08.023
- 6 X. Li, Q. Zhang, B. Hou, J. Ye, S. Mao, X. Li, Powder Technol. 2017, 318, 224–229. DOI: https://doi.org/10.1016/j.powtec.2017.06.003
- 7 Y. Han, S. Han, B. Kim, J. Yang, J. Choi, K. Kim, K.-S. You, H. Kim, J. Ind. Eng. Chem. 2018, 70, 107–115. DOI: https://doi.org/10.1016/j.jiec.2018.09.036
- 8 S. Jaiswal, S. K. Tripathy, P. K. Banerjee, Int. J. Miner. Process. 2015, 134, 97–110. DOI: https://doi.org/10.1016/j.minpro.2014.11.007
- 9
G. G. O. O. Uwadiale, Miner. Process. Extr. Metall. Rev.
1992, 11, 129–161. DOI: https://doi.org/10.1080/08827509208914209
10.1080/08827509208914209 Google Scholar
- 10 A. Pattanaik, R. Venugopal, Colloid Interface Sci. Commun. 2018, 25, 41–65. DOI: https://doi.org/10.1016/j.colcom.2018.06.003
- 11 B. Luo, Y. Zhu, C. Sun, Y. Li, Y. Han, Miner. Eng. 2018, 117, 121–126. DOI: https://doi.org/10.1016/j.mineng.2017.12.016
- 12 L. O. Filippov, V. V. Severov, I. V. Filippova, Int. J. Miner. Process. 2014, 127, 62–69. DOI: https://doi.org/10.1016/j.minpro.2014.01.002
- 13 X. Zhang, Y. Zhu, Y. Xie, Y. Shang, G. Zheng, Sep. Purif. Technol. 2017, 186, 175–181. DOI: https://doi.org/10.1016/j.seppur.2017.05.051
- 14
X. Weng, A. V. Nguyen, G. Mei, Y. Yu, Am. J. Anal. Chem.
2014, 5, 646–654. DOI: https://doi.org/10.4236/ajac.2014.510072
10.4236/ajac.2014.510072 Google Scholar
- 15 X. Luo, Y. Wang, S. Wen, M. Ma, C. Sun, W. Yin, Y. Ma, Int. J. Miner. Process. 2016, 152, 1–6. DOI: https://doi.org/10.1016/j.minpro.2016.04.008
- 16 N. P. Lima, G. E. S. Valadão, A. E. C. Peres, Miner. Eng. 2013, 45, 180–184. DOI: https://doi.org/10.1016/j.mineng.2013.03.001
- 17 H. Sahoo, S. S. Rath, B. Das, B. K. Mishra, Miner. Eng. 2016, 95, 107–112. DOI: https://doi.org/10.1016/j.mineng.2016.06.024
- 18 Z. Huang, H. Zhong, S. Wang, L. Xia, W. Zou, G. Liu, Chem. Eng. J. 2014, 257, 218–228. DOI: https://doi.org/10.1016/j.cej.2014.07.057
- 19 X. Yu, L. Wang, C. Liu, L. Hu, X. Wei, Z. Huang, G. He, Miner. Eng. 2018, 129, 106–111. DOI: https://doi.org/10.1016/j.mineng.2018.09.020
- 20 H. Ye, I. Matsuoka, Int. J. Miner. Process. 1993, 40, 123–136. DOI: https://doi.org/10.1016/0301-7516(93)90045-C
- 21 N. P. Lima, T. C. de Souza Pinto, A. C. Tavares, J. Sweet, Miner. Eng. 2016, 96/97, 53–58. DOI: https://doi.org/10.1016/j.mineng.2016.05.018
- 22 D. Hewitt, D. Fornasiero, J. Ralston, L. R. Fischer, J. Chem. Soc. Faraday Trans. 1993, 89 (5), 817–822. DOI: https://doi.org/10.1039/FT9938900817
- 23 A. Wiertel-Pochopien, J. Zawala, Physicochem. Probl. Miner. Process. 2018, 54 (4), 1083–1094. DOI: https://doi.org/10.5277/ppmp18129
- 24 K. Małysa, M. Krasowska, M. Krzan, Adv. Colloid Interface Sci. 2005, 114–115C, 205–205.
- 25 M. Krasowska, M. Kolasińska, P. Warszynski, K. Malysa, J. Phys. Chem. C 2007, 111 (15), 5743–5749. DOI: https://doi.org/10.1021/jp068486e
- 26 J. Zawala, D. Kosior, K. Malysa, Adv. Colloid Interface Sci. 2015, 222, 765–778. DOI: https://doi.org/10.1016/j.cis.2014.07.013
- 27 S. S. Dukhin, R. Miller, G. Loglio, in Drops Bubbles Interfacial Research (Eds: D. Mobius, R. Miller), Elsevier, Amsterdam 1998, 367–432.
- 28 V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs 1962.
- 29 A. Gracia, J. Lachaise, P. Creux, in Encyclopedia of Surface and Colloid Science, 3rd ed., Taylor & Francis, London 2015, 731–739.
- 30 N. V. Churaev, I. P. Sergeeva, V. D. Sobolev, H.-J. Jacobasch, P. Weidenhammer, F.-J. Schmitt, Colloids Surf., A 2000, 164, 121–129. DOI: https://doi.org/10.1016/S0927-7757(99)00031-X
- 31 L. R. Fisher, E. E. Mitchell, D. Hewitt, J. Ralston, J. Wolfe, Colloids Surf. 1991, 52, 163–174. DOI: https://doi.org/10.1016/0166-6622(91)80011-C
- 32 J. Zawala, A. Niecikowska, Rev. Sci. Instrum. 2017, 88, 095106. DOI: https://doi.org/10.1063/1.5001846
- 33 A. S. Najafi, Z. Xu, J. Masliyah, Chem. Eng. Sci. 2008, 63, 1779–1787. DOI: https://doi.org/10.1016/j.ces.2007.12.013
- 34 E. V. Aksenenko, in Surfactants Chemistry, Interfacial Properties, Applications (Eds: V. B. Fainerman, D. Mobius, R. Miller), Elsevier, Amsterdam 2001, 619–648.
- 35 V. B. Fainerman, E. V. Aksenenko, R. Miller, A. V. Makievski, in Surfactants Chemistry, Interfacial Properties, Applications (Eds: V. B. Fainerman, D. Mobius, R. Miller), Elsevier, Amsterdam 2001, 189–286.
- 36 D. Kosior, J. Zawala, Phys. Chem. Chem. Phys. 2018, 20, 2403–2412. DOI: https://doi.org/10.1039/C7CP06099H
- 37 A. F. H. Ward, L. Tordai, J. Chem. Phys. 1946, 14, 453–461. DOI: https://doi.org/10.1063/1.1724167
- 38 L. G. T. Eriksson, P. M. Claesson, J. C. Eriksson, V. V. Yaminsky, J. Colloid Interface Sci. 1996, 181, 476–489. DOI: https://doi.org/10.1006/jcis.1996.0405
- 39 K. Fa, V. K. Paruchuri, S. C. Brown, B. M. Moudgil, J. Miller, Phys. Chem. Chem. Phys. 2005, 7, 678–684. DOI: https://doi.org/10.1039/b417902a
- 40 K. W. Stockelhuber, Eur. Phys. J. E: Soft Matter Biol. Phys. 2003, 12, 431–435. DOI: https://doi.org/10.1140/epje/e2004-00012-9
- 41
A. Scheludko, Adv. Colloid Interface Sci.
1967, 1, 391–464. DOI: https://doi.org/10.1016/0001-8686(67)85001-2
10.1016/0001-8686(67)85001-2 Google Scholar
- 42 M. Krasowska, J. Zawala, K. Malysa, Adv. Colloid Interface Sci. 2009, 147/148, 155–169. DOI: https://doi.org/10.1016/j.cis.2008.10.003