Energy, Thermal, and Economic Analysis of Air Heat Pumps for Hot Water
Corresponding Author
Mariusz Szreder
Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Lukasiewicza 17, 09-400 Plock, Poland
Correspondence: Mariusz Szreder ([email protected]), Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Lukasiewicza 17, 09-400 Plock, Poland.Search for more papers by this authorCorresponding Author
Mariusz Szreder
Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Lukasiewicza 17, 09-400 Plock, Poland
Correspondence: Mariusz Szreder ([email protected]), Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Lukasiewicza 17, 09-400 Plock, Poland.Search for more papers by this authorAbstract
Operation tests of an air heat pump used for domestic hot water (DHW) heating were performed. The influence of the supply air temperature in the evaporator cycle and the variable heat load of the condenser on the heating power of the heat pump and the coefficient of performance (COP) was evaluated and discussed. In order to ensure conditions for efficient compressor operation, it is advisable to gradate the heat load of the heat pump using a circulating pump with smooth capacity regulation. The economic analysis demonstrates that the usage of air heat pumps for DHW in comparison with installations equipped with solar collectors provides no measurable economic benefits.
References
- 1 J. Kazjonovs, A. Sipkevics, A. Jakovics, A. Dancigs, D. Bajare, Environ. Climate Technol. 2014, 14, 18–22. DOI: https://doi.org/10.1515/rtuect-2014-0009
- 2 M. Szreder, Appl. Therm. Eng. 2014, 71, 596–606. DOI: https://doi.org/10.1016/j.applthermaleng.2014.06.046
- 3 A. S. Anifantis, Chem. Eng. Trans. 2017, 58, 511–516. DOI: https://doi.org/10.3303/CET1758086
- 4 O. Ibrahim, F. Fardoun, Build. Environ. 2014, 72, 259–286. DOI: https://doi.org/10.1016/j.buildenv.2013.09.006
- 5 S. Piwowarczyk, InstalReporter 2014, 9, 40–46.
- 6 J. Zimny, P. Michalak, K. Szczotka, Renewable Sustainable Energy Rev. 2015, 48, 791–812. DOI: https://doi.org/10.1016/j.rser.2015.04.005
- 7 P. Lachman, Heat Pump Market in Poland, Report PORTPC, 2017, 1–46.
- 8 D. Cortes-Borda, A. Ruiz-Hernandez, G. Guillen-Gosalbez, Energy Policy 2015, 77, 21–30. DOI: https://doi.org/10.1016/j.enpol.2014.11.020
- 9
V. Popa, I. Ion, Energy Procedia
2016, 85, 408–415. DOI: https://doi.org/10.1016/j.egypro.2015.12.221
10.1016/j.egypro.2015.12.221 Google Scholar
- 10 P. Wagener, VI Congress of PORT PC, Warsaw, May 2017.
- 11 X. Dong, Q. Tian, Appl. Ther. Eng. 2017, 123, 1013–1020. DOI: https://doi.org/10.1016/j.applthermaleng.2017.05.183
- 12 J. Peng, H. Li, C. Zhang, Appl. Therm. Eng. 2016, 99, 1190–1200. DOI: https://doi.org/10.1016/j.applthermaleng.2016.01.113
- 13 Y. Tian, C. Y. Zhao, Appl. Energy 2013, 104, 538–553. DOI: https://doi.org/10.1016/j.apenergy.2012.11.051
- 14 J. Vega, C. Cuevas, Appl. Therm. Eng. 2018, 141, 565–578. DOI: https://doi.org/10.1016/j.applthermaleng.2018.06.011
- 15 G. N. Tiwari, R. K. Mishra, S. C. Solanki, Appl. Energy 2011, 88, 2287–2304. DOI: https://doi.org/10.1016/j.apenergy.2011.01.005
- 16 F. J. Aguilar, S. Aledo, P. V. Quiles, Appl. Ther. Eng. 2016, 101, 379–389. DOI: https://doi.org/10.1016/j.applthermaleng.2016.01.127
- 17 P. Gang, J. Jie, H. Wei, L. Keliang, H. Hanfeng, J. Energy Environ. 2007, 6, 1–9.
- 18 S. Poppi, C. Bales, A. Heinz, Appl. Energy 2016, 173, 606–623. DOI: https://doi.org/10.1016/j.apenergy.2016.04.048
- 19 J. Bigorajski, D. Chwieduk, Renewable Energy 2018, in press. DOI: https://doi.org/10.1016/j.renene.2018.01.116
- 20 E. Bellos, C. Tzivanidis, Appl. Therm. Eng. 2019, 149, 528–535. DOI: https://doi.org/10.1016/j.applthermaleng.2018.12.059
- 21 K. Klein, K. Huchtemann, D. Muller, Energy Build. 2014, 69, 193–201. DOI: https://doi.org/10.1016/j.enbuild.2013.10.032
- 22 Z. He, Y. Zhang, Z. Wu, H. Ma, S. Dong, Appl. Ther. Eng. 2017, 124, 71–82. DOI: https://doi.org/10.1016/j.applthermaleng.2017.05.161
- 23 T. G. Walmsley, J. J. Klemes, M. R. W. Walmsley, M. J. Atkins, P. S. Varbanov, Chem. Eng. Trans. 2017, 57, 1039–1044. DOI: https://doi.org/10.3303/CET1757174
- 24 H. Jung, H. Kang, W. Yoon, Int. J. Refrig. 2013, 36, 1431–1441. DOI: https://doi.org/10.1016/j.ijrefrig.2013.03.003
- 25 Q. Minglu, F. Yanan, C. Jianbo, L. Tianrui, L. Zhao, L. He, Appl. Therm. Eng. 2017, 110, 835–843. DOI: https://doi.org/10.1016/j.applthermaleng.2016.08.176
- 26 M. Szreder, Chem. Eng. Trans. 2018, 70, 1831–1836. DOI: https://doi.org/10.3303/CET1870306
- 27 M. Miara, InstalReporter 2011, 2, 12–16.
- 28 J. Guo, J. Wu, R. Wang, S. Li, Appl. Energy 2011, 88, 4128–4138. DOI: https://doi.org/10.1016/j.apenergy.2011.04.012
- 29 M. Jiang, J. Wu, R. Wang, Build. Environ. 2011, 46, 1954–1961. DOI: https://doi.org/10.1016/j.buildenv.2011.04.003
- 30 P. Poulet, R. Outbib, Appl. Energy 2015, 147, 413–429. DOI: https://doi.org/10.1016/j.apenergy.2015.03.005
- 31 M. Smuczynska, InstalReporter 2017, 5, 35–38.