Effect of the ZIF-8 Distribution in Mixed-Matrix Membranes Based on Matrimid® 5218-PEG on CO2 Separation
Corresponding Author
Roberto Castro-Muñoz
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
Correspondence: Roberto Castro-Muñoz ([email protected]), University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.Search for more papers by this authorVlastimil Fíla
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Roberto Castro-Muñoz
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
Correspondence: Roberto Castro-Muñoz ([email protected]), University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.Search for more papers by this authorVlastimil Fíla
University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
Search for more papers by this authorAbstract
In theory, the combination of inorganic materials and polymers may provide a synergistic performance for mixed-matrix membranes (MMMs); however, the filler dispersion into the MMMs is a crucial technical parameter for obtaining compelling MMMs. The effect of the filler distribution on the gas separation performance of the MMMs based on Matrimid®-PEG 200 and ZIF-8 nanoparticles is demonstrated. The MMMs were prepared by two different membrane preparation procedures, namely, the traditional method and non-dried metal-organic framework (MOF) method. In CO2/CH4 binary mixtures, the MMMs were tested under fixed conditions and characterized by various methods. Finally, regardless of the MMM preparation procedure, the incorporation of 30 wt % ZIF-8 nanoparticles allowed to increase the CO2 permeability in MMMs. The ZIF-8 dispersion influenced significantly the separation factor.
References
- 1 P. Luis, B. Van der Bruggen, Greenhouse Gases Sci. Technol. 2013, 2, 1–20. DOI: https://doi.org/10.1002/ghg
- 2 S. Kim, Y. M. Lee, Prog. Polym. Sci. 2015, 43, 1–32. DOI: https://doi.org/10.1016/j.progpolymsci.2014.10.005
- 3 R. Castro-Muñoz, V. Fíla, C. T. Dung, Chem. Eng. Commun. 2017, 204, 295–309. DOI: https://doi.org/10.1080/00986445.2016.1273832
- 4 S. Saqib, S. Rafiq, M. Chawla, M. Saeed, N. Muhammad, S. Khurram, K. Majeed, A. Khan, M. Ghauri, F. Jamil, M. Aslam, Chem. Eng. Technol. 2018, 42 (1), 30–44. DOI: https://doi.org/10.1002/ceat.201700653
- 5 A. Fernandez-Barquin, C. Casado-Coterillo, M. Etxeberria-Benavides, J. Zuñiga, A. Irabien, Chem. Eng. Technol. 2017, 40, 997–1007. DOI: https://doi.org/10.1002/ceat.201600580
- 6 V. Martin-Gil, M. Z. Ahmad, R. Castro-Muñoz, V. Fila, Sep. Purif. Rev. 2018, in press. DOI: https://doi.org/10.1080/15422119.2018.1532911
- 7 E. V. Perez, K. J. Balkus, J. P. Ferraris, I. H. Musselman, J. Membr. Sci. 2009, 328, 165–173. DOI: https://doi.org/10.1016/j.memsci.2008.12.006
- 8 S. Basu, A. Cano-Odena, I. F. J. Vankelecom, J. Membr. Sci. 2010, 362, 478–487. DOI: https://doi.org/10.1016/j.memsci.2010.07.005
- 9 F. Dorosti, M. Omidkhah, R. Abedini, Chem. Eng. Res. Des. 2014, 92, 2439–2448. DOI: https://doi.org/10.1016/j.cherd.2014.02.018
- 10 M. J. C. Ordoñez, K. J. Balkus, J. P. Ferraris, I. H. Musselman, J. Membr. Sci. 2010, 361, 28–37. DOI: https://doi.org/10.1016/j.memsci.2010.06.017
- 11 R. Castro-Muñoz, V. Martin-Gil, M. Z. Ahmad, V. Fíla, Chem. Eng. Commun. 2018, 205, 161–196. DOI: https://doi.org/10.1080/00986445.2017.1378647
- 12 G. Dong, H. Li, V. Chen, J. Mater. Chem. A 2013, 1, 4610–4630. DOI: https://doi.org/10.1039/c3ta00927k
- 13 R. Castro-Muñoz, V. Fíla, Membranes 2018, 8, 30. DOI: https://doi.org/10.3390/membranes8020030
- 14 M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, T. Matsuura, Prog. Polym. Sci. 2014, 39, 817–861. DOI: https://doi.org/10.1016/j.progpolymsci.2014.01.003
- 15 J. A. Thompson, K. W. Chapman, W. J. Koros, C. W. Jones, S. Nair, Microporous Mesoporous Mater. 2012, 158, 292–299. DOI: https://doi.org/10.1016/j.micromeso.2012.03.052
- 16 O. G. Nik, X. Y. Chen, S. Kaliaguine, J. Membr. Sci. 2011, 379, 468–478. DOI: https://doi.org/10.1016/j.memsci.2011.06.019
- 17 M. G. Buonomenna, W. Yave, G. Golemme, RSC Adv. 2012, 2, 10745. DOI: https://doi.org/10.1039/c2ra20748f
- 18 R. Mahajan, R. Burns, M. Schaeffer, W. J. Koros, J. Appl. Polym. Sci. 2002, 86, 881–890. DOI: https://doi.org/10.1002/app.10998
- 19 R. Castro-Muñoz, F. Galiano, V. Fíla, E. Drioli, A. Figoli, Rev. Chem. Eng. 2018, in press. DOI: https://doi.org/10.1515/revce-2017-0115
- 20 A. Kertik, A. L. Khan, I. F. J. Vankelecom, RSC Adv. 2016, 6, 114505–114512. DOI: https://doi.org/10.1039/C6RA23013J
- 21 L. Diestel, N. Wang, A. Schulz, F. Steinbach, J. Caro, Ind. Eng. Chem. Res. 2015, 54, 1103–1112. DOI: https://doi.org/10.1021/ie504096j
- 22 C. Duan, X. Jie, D. Liu, Y. Cao, Q. Yuan, J. Membr. Sci. 2014, 466, 92–102. DOI: https://doi.org/10.1016/j.memsci.2014.04.024
- 23 H. Y. Zhao, Y. M. Cao, X. L. Ding, M. Q. Zhou, J. H. Liu, Q. Yuan, J. Membr. Sci. 2008, 320, 179–184. DOI: https://doi.org/10.1016/j.memsci.2008.03.070
- 24 R. Castro-Muñoz, V. Fíla, V. Martin-Gil, C. Muller, Sep. Purif. Technol. 2019, 210, 553–562. DOI: https://doi.org/10.1016/j.seppur.2018.08.046
- 25 M. L. Cecopieri-Gomez, J. Palacios-Alquisira, J. M. Dominguez, J. Membr. Sci. 2007, 293, 53–65. DOI: https://doi.org/10.1016/j.memsci.2007.01.034
- 26 S. M. Davoodi, M. Sadeghi, M. Naghsh, A. Moheb, RSC Adv. 2016, 6, 23746–23759. DOI: https://doi.org/10.1039/C6RA00553E
- 27 F. Aziz, A. F. Ismail, Sep. Purif. Technol. 2010, 73, 421–428. DOI: https://doi.org/10.1016/j.seppur.2010.05.002
- 28 S. Shahid, K. Nijmeijer, J. Membr. Sci. 2014, 459, 33–44. DOI: https://doi.org/10.1016/j.memsci.2014.02.009
- 29 Y. Xiao, T. S. Chung, M. L. Chang, S. Tamai, A. Yamaguchi, J. Phys. Chem. B 2005, 109, 18741–18748. DOI: https://doi.org/10.1021/jp050177l
- 30 X. Y. Chen, H. Vinh-Thang, D. Rodrigue, S. Kaliaguine, Ind. Eng. Chem. Res. 2012, 51, 6895–6906. DOI: https://doi.org/10.1021/ie3004336
- 31 C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, W. J. Koros, J. Membr. Sci. 2012, 389, 34–42. DOI: https://doi.org/10.1016/j.memsci.2011.10.003
- 32 S. N. Wijenayake, N. P. Panapitiya, S. H. Versteeg, C. N. Nguyen, S. Goel, K. J. Balkus, I. H. Musselman, J. P. Ferraris, Ind. Eng. Chem. Res. 2013, 6991–7001. DOI: https://doi.org/10.1021/ie400149e
- 33 S. Matteucci, V. A. Kusuma, S. D. Kelman, B. D. Freeman, Polymer 2008, 49, 1659–1675. DOI: https://doi.org/10.1016/j.polymer.2008.01.004
- 34 D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, J. Am. Chem. Soc. 2011, 8900–8902. DOI: https://doi.org/10.1021/ja202154j
- 35 J. Ma, Y. Ying, Q. Yang, Y. Ban, H. Huang, X. Guo, Y. Xiao, D. Liu, Y. Li, W. Yang, C. Zhong, Chem. Commun. 2015, 51, 4249–4251. DOI: https://doi.org/10.1039/C5CC00384A
- 36 B. W. Rowe, B. D. Freeman, D. R. Paul, Polymer 2009, 50, 5565–5575. DOI: https://doi.org/10.1016/j.polymer.2009.09.037
- 37 B. Zornoza, S. Irusta, C. Téllez, J. Coronas, Langmuir 2009, 25, 5903–5909. DOI: https://doi.org/10.1021/la900656z
- 38 N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, R. S. Murali, T. Matsuura, RSC Adv. 2014, 4, 52530–52541. DOI: https://doi.org/10.1039/C4RA08460H
- 39 L. M. Robeson, J. Membr. Sci. 2008, 320, 390–400. DOI: https://doi.org/10.1016/j.memsci.2008.04.030
- 40
E. Favvas, A. Figoli, R. Castro-Muñoz, V. FÍla, H. He, in Current Trends and Future Developments on (Bio-) Membranes (Eds: A. Basile, E. Favvas), 1st ed., Elsevier Science Publishing, New York
2018, pp. 1–49.
10.1016/B978-0-12-813549-5.00001-3 Google Scholar
- 41 V. Martin-Gil, A. Lopez, P. Hrabanek, R. Mallada, I. F. J. Vankelecom, V. Fila, J. Membr. Sci. 2017, 523, 24–35. DOI: https://doi.org/10.1016/j.memsci.2016.09.041
- 42 A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. Le Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, J. Gascon, Adv. Funct. Mater. 2016, 26, 3154–3163. DOI: https://doi.org/10.1002/adfm.201505352
- 43 J. O. Hsieh, K. J. Balkus, J. P. Ferraris, I. H. Musselman, Microporous Mesoporous Mater. 2014, 196, 165–174. DOI: https://doi.org/10.1016/j.micromeso.2014.05.006
- 44 M. Loloei, M. Omidkhah, A. Moghadassi, A. E. Amooghin, Int. J. Greenhouse Gas Control 2015, 39, 225–235. DOI: https://doi.org/10.1016/j.ijggc.2015.04.016