Flow Regimes of Viscous Immiscible Liquids in T-Type Microchannels
Corresponding Author
Andrey V. Minakov
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
Correspondence: Andrey V. Minakov ([email protected]), Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia.Search for more papers by this authorAnna A. Shebeleva
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
Search for more papers by this authorAnna A. Yagodnitsyna
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorAlexander V. Kovalev
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorArtur V. Bilsky
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorCorresponding Author
Andrey V. Minakov
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
Correspondence: Andrey V. Minakov ([email protected]), Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia.Search for more papers by this authorAnna A. Shebeleva
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
Search for more papers by this authorAnna A. Yagodnitsyna
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorAlexander V. Kovalev
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorArtur V. Bilsky
Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorAbstract
A computational and experimental study of the flow regimes of a mixture of castor and paraffin oils in a T-type microchannel with 200 × 400 µm cross section was carried out. The ranges of parallel, slug, droplet, and rivulet flow regimes of the tested mixture were defined. According to the experimental results, a flow regime map was constructed for this mixture depending on the Weber number multiplied by the Ohnesorge number. A correlation of the length of paraffin oil slugs to the fluid flow ratio was established. The experimental data were compared with results of numerical simulation. A good agreement between calculation and experimental data was achieved in terms of reproduction of flow regimes, phase boundaries, and slug length.
References
- 1 U. Novak, A. Pohar, I. Plazl, P. Žnidaršič-Plazl, Sep. Purif. Technol. 2012, 97, 172–178.
- 2 D. Tsaoulidis, P. Angeli, Chem. Eng. J. 2015, 262, 785–793.
- 3 L. Ducry, D. M. Roberge, Angew. Chem. Int. Ed. 2005, 44 (48), 7972–7975.
- 4 Y. Li, D. G. Yamane, S. Li, S. Biswas, R. K. Reddy, J. S. Goettert, C. S. S. R. Kumar, Chem. Eng. J. 2013, 217, 447–459.
- 5 M. Claire, B. Jean-François, P. Laurent, Chem. Eng. Technol. 2018, 41 (10), 1965–1974.
- 6 P. Minqiang, Z. Yi, V. Kambiz, Chem. Eng. Technol. 2017, 40 (10), 1774–1783.
- 7 K. Nauman, K. Isao, U. Kunihiko, Chem. Eng. Technol. 2017, 40 (12), 2351–2355.
- 8 H. Liu, C. Yao, Y. Zhao, G. Chen, Chem. Eng. Technol. 2018, 41 (7), 1398–1405.
- 9 A. Šalić, A. Tušek, B. Zelić, J. Appl. Biomed. 2012, 10 (3), 137–153.
- 10 T. M. Tran, F. Lan, C. S. Thompson, A. R. Abate, J. Phys. D: Appl. Phys. 2013, 46 (11), 114004.
- 11 D. M. Roberge, L. Ducry, N. Bieler, P. Cretton, B. Zimmermann, Chem. Eng. Technol. 2005, 28 (3), 318–323.
- 12 H. Foroughi, M. Kawaji, Int. J. Multiphase Flow 2011, 37 (9), 1147–1155.
- 13 A. A. Yagodnitsyna, A. V. Kovalev, A. V. Bilsky, Chem. Eng. J. 2016, 303, 547–554.
- 14
A. A. Yagodnitsyna, A. V. Kovalev, A. V. Bilsky, J. Phys.: Conf. Ser.
2017, 899, 32026.
10.1088/1742-6596/899/3/032026 Google Scholar
- 15 Y. Zhao, G. Chen, Q. Yuan, AIChE J. 2006, 52 (12), 4052–4060.
- 16 Z. Wu, Z. Cao, B. Sundén, Chem. Eng. Sci. 2017, 174, 56–66.
- 17 M. Kashid, L. Kiwi-Minsker, Chem. Eng. Process. Process Intensif. 2011, 50 (10), 972–978.
- 18 S. Waelchli, P. Rudolf von Rohr, Int. J. Multiphase Flow 2006, 32 (7), 791–806.
- 19 P. Garstecki, M. J. Fuerstman, H. A. Stone, G. M. Whitesides, Lab Chip 2006, 6 (3), 437–446.
- 20 J. H. Xu, S. W. Li, J. Tan, G. S. Luo, Microfluid. Nanofluid. 2008, 5 (6), 711–717.
- 21 Y. Su, G. Chen, Q. Yuan, Chem. Eng. Technol. 2014, 37 (3), 427–434.
- 22 A. Salim, M. Fourar, J. Sausse, Can. J. Chem. Eng. 2008, 86 (6), 978–988.
- 23 Q. Li, P. Angeli, Chem. Eng. J. 2017, 328, 717–736.
- 24 R. Gupta, S. S. Y. Leung, R. Manica, D. F. Fletcher, B. S. Haynes, Chem. Eng. Sci. 2013, 92, 180–189.
- 25 Y. Li, R. K. Reddy, C. S. S. R. Kumar, K. Nandakumar, Biomicrofluidics 2014, 8 (5), 1–18.
- 26 F. Sarrazin, T. Bonometti, L. Prat, C. Gourdon, J. Magnaudet, Microfluid. Nanofluid. 2008, 5 (1), 131–137.
- 27 M. N. Kashid, F. Platte, D. W. Agar, S. Turek, J. Comput. Appl. Math. 2007, 203, 487–497.
- 28 R. Raj, N. Mathur, V. V. Buwa, Ind. Eng. Chem. Res. 2010, 49, 10606–10614.
- 29 V. Talimi, Y. S. Muzychka, S. Kocabiyik, Int. J. Multiphase Flow 2012, 39, 88–104.
- 30 M. Wörner, Microfluid. Nanofluid. 2012, 12 (6), 841–886.
- 31 J. U. Brackbill, D. B. Kothe, C. Zemach, J. Comput. Phys. 1992, 100, 335–354.
- 32 C. W. Hirt, B. D. Nichols, J. Comput. Phys. 1981, 39, 201–226.
- 33 A. V. Minakov, Comput. Math. Math. Phys. 2014, 54 (10), 1560–1570.
- 34 S. F. Kistler, in Wettability (Ed.: J. C. Berg), Marcel Dekker, New York 1993.