Liquid Maldistribution in Random-Packed Columns: Experimental Investigation of Influencing Factors†
Corresponding Author
Florian Hanusch
Technical University of Munich, Department of Mechanical Engineering, Institute of Plant and Process Technology, Boltzmannstrasse 15, 85748 Garching, Germany
Correspondence: Florian Hanusch ([email protected]), Technical University of Munich, Department of Mechanical Engineering, Institute of Plant and Process Technology, Boltzmannstrasse 15, 85748 Garching, Germany.Search for more papers by this authorSebastian Rehfeldt
Technical University of Munich, Department of Mechanical Engineering, Institute of Plant and Process Technology, Boltzmannstrasse 15, 85748 Garching, Germany
Search for more papers by this authorHarald Klein
Technical University of Munich, Department of Mechanical Engineering, Institute of Plant and Process Technology, Boltzmannstrasse 15, 85748 Garching, Germany
Search for more papers by this authorCorresponding Author
Florian Hanusch
Technical University of Munich, Department of Mechanical Engineering, Institute of Plant and Process Technology, Boltzmannstrasse 15, 85748 Garching, Germany
Correspondence: Florian Hanusch ([email protected]), Technical University of Munich, Department of Mechanical Engineering, Institute of Plant and Process Technology, Boltzmannstrasse 15, 85748 Garching, Germany.Search for more papers by this authorSebastian Rehfeldt
Technical University of Munich, Department of Mechanical Engineering, Institute of Plant and Process Technology, Boltzmannstrasse 15, 85748 Garching, Germany
Search for more papers by this authorHarald Klein
Technical University of Munich, Department of Mechanical Engineering, Institute of Plant and Process Technology, Boltzmannstrasse 15, 85748 Garching, Germany
Search for more papers by this authorEnglish version of: F. Hanusch, S. Rehfeldt, H. Klein, Chem. Ing. Tech. 2017, 89 (11), 1550–1560. DOI: https://doi.org/10.1002/cite.201700015
Abstract
Tray and packed columns are frequently used for the implementation of the unit operations rectification, absorption, and desorption. A maximized phase interface between gas and liquid in these devices is beneficial for mass transfer. Investigations on liquid maldistribution in random packings are conducted in a packed column at varying experimental and operating parameters in terms of type of packing, packing height, liquid distributor, liquid load, and gas load. Graphical presentations in form of distribution spectra and further evaluation by means of a maldistribution factor provide insight into the influence of different parameters on maldistribution.
References
- 1 M. Baerns, A. Behr, A. Brehm, J. Gmehling, K.-O. Hinrichsen, H. Hofmann, U. Onken, R. Palkovits, A. Renken, Technische Chemie, 2nd ed., Wiley-VCH, Weinheim 2013.
- 2
A. Mersmann, M. Kind, J. Stichlmair, Thermische Verfahrenstechnik: Grundlagen und Methoden, 2nd ed., Springer-Verlag, Berlin
2005.
10.1007/3-540-26620-8_96 Google Scholar
- 3 R. J. Kouri, J. Sohlo, Inst. Chem. Eng. Symp. Ser. 1987, 104, B193–B211.
- 4 R. J. Kouri, J. Sohlo, Chem. Eng. J. 1996, 61 (2), 95–105. DOI: https://doi.org/10.1016/0923-0467(95)03032-8
- 5 K. E. Porter, Q. H. Ali, A. O. Hassan, A. F. Aryan, Ind. Eng. Chem. Res. 1993, 32 (10), 2408–2417. DOI: https://doi.org/10.1021/ie00022a026
- 6 S. Young, Distillation Principles and Processes, Macmillan and Co., London 1922.
- 7 E. Kirschbaum, VDI Z. 1931, 75 (39), 1212–1216.
- 8
E. Kirschbaum, Destillier- und Rektifiziertechnik, Springer, Berlin
1940.
10.1007/978-3-662-05531-1 Google Scholar
- 9
K. Thormann, Destillieren und Rektifizieren, Springer, Berlin
1928.
10.1007/978-3-662-29122-1 Google Scholar
- 10
E. Kirschbaum, Destillier- und Rektifiziertechnik, Springer, Berlin
1950.
10.1007/978-3-642-52925-2 Google Scholar
- 11 P. J. Hoek, Dissertation, Technische Hogeschool Delft 1983.
- 12 H. Z. Kister, Distillation Operation, 1st ed., McGraw-Hill, New York 1990.
- 13 M. Schultes, Ind. Eng. Chem. Res. 2000, 39 (5), 1381–1389. DOI: https://doi.org/10.1021/ie990437j
- 14 F. Hurter, J. Soc. Chem. Ind., London 1893, 12 (3), 227–232. DOI: https://doi.org/10.1002/jctb.5000120301
- 15 M. Weimann, Dissertation, Technische Hochschule zu Karlsruhe 1932.
- 16 T. Baker, T. H. Chilton, H. C. Vernon, Trans. Am. Inst. Chem. Eng. 1935, 31, 296–315.
- 17 S. Uchida, S. Fujita, J. Soc. Chem. Ind., Jpn. 1936, 39 (Suppl.), 432B–441B. DOI: https://doi.org/10.1246/nikkashi1898.39.Supplement_426B
- 18 V. Staněk, V. Kolář, Collect. Czech. Chem. Commun. 1968, 33 (4), 1049–1061. DOI: https://doi.org/10.1135/cccc19681049
- 19 E. Dutkai, E. Ruckenstein, Chem. Eng. Sci. 1968, 23 (11), 1365–1373. DOI: https://doi.org/10.1016/0009-2509(68)89046-3
- 20 F. Yin, Z. Wang, A. Afacan, K. Nandakumar, K. T. Chuang, Can. J. Chem. Eng. 2000, 78 (3), 449–457. DOI: https://doi.org/10.1002/cjce.5450780303
- 21 A. H. Scott, Trans. Inst. Chem. Eng. 1935, 13, 211–217.
- 22 K. E. Porter, M. C. Jones, Trans. Inst. Chem. Eng. 1963, 41, 240–247.
- 23 G. G. Bemer, F. J. Zuiderweg, Chem. Eng. Sci. 1978, 33 (12), 1637–1643. DOI: https://doi.org/10.1016/0009-2509(78)85140-9
- 24 A. N. Pavlenko, N. I. Pecherkin, V. Y. Chekhovich, V. E. Zhukov, S. Sunder, P. Houghton, A. F. Serov, A. D. Nazarov, Theor. Found. Chem. Eng. 2006, 40 (4), 329–338. DOI: https://doi.org/10.1134/S0040579506040014
- 25 Ž. Olujić, H. Jansen, Chem. Eng. Res. Des. 2015, 99, 2–13. DOI: https://doi.org/10.1016/j.cherd.2015.03.003
- 26 P. Flatt, Chem. Ing. Tech. 1966, 38 (3), 254–259. DOI: https://doi.org/10.1002/cite.330380314
- 27 D. Dzhonova-Atanasova, N. Kolev, S. Nakov, Chem. Eng. Technol. 2007, 30 (2), 202–207. DOI: https://doi.org/10.1002/ceat.200600327
- 28 H. C. Groenhof, Chem. Eng. J. 1977, 14 (3), 193–203. DOI: https://doi.org/10.1016/0300-9467(77)85017-X
- 29 M. Grünewald, G. Zheng, M. Kopatschek, Chem. Ing. Tech. 2011, 83 (7), 1026–1035. DOI: https://doi.org/10.1002/cite.201100041
- 30 C. S. Hwa, R. B. Beckmann, AIChE J. 1960, 6 (3), 359–364. DOI: https://doi.org/10.1002/aic.690060304
- 31 M. Huber, R. Hiltbrunner, Chem. Eng. Sci. 1966, 21 (9), 819–832. DOI: https://doi.org/10.1016/0009-2509(66)87010-0
- 32 A. E. Refre, L. J. Hellinckx, Chem. Eng. J. 1979, 18 (1), 1–12. DOI: https://doi.org/10.1016/0300-9467(79)80009-X
- 33 J. Gostick, M. Pritzker, A. Lohi, H. D. Doan, Chem. Eng. J. 2004, 100 (1–3), 33–41. DOI: https://doi.org/10.1016/j.cej.2003.12.001
- 34 J. Stichlmair, S. Ulbrich, Chem. Ing. Tech. 1985, 57 (5), 468–470. DOI: https://doi.org/10.1002/cite.330570519
- 35 J. Stichlmair, A. Stemmer, Inst. Chem. Eng. Symp. Ser. 1987, 104, B213–B224.
- 36 R. Potthoff, J. Stichlmair, Chem. Ing. Tech. 1991, 63 (1), 72–73.
- 37 O. Schneider, Maldistribution in Packungskolonnen: Ausmaß, Auswirkungen und Gegenmaßnahmen, Fortschr.-Ber. VDI Reihe 3, Vol. 823, VDI-Verlag, Düsseldorf 2004.
- 38 F. Kammermaier, Neuartige Einbauten zur Unterdrückung der Maldistribution in Packungskolonnen, Fortschr.-Ber. VDI Reihe 3, Vol. 892, VDI-Verlag, Düsseldorf 2008.
- 39 D. Toye, P. Marchot, M. Crine, G. L‘Homme, Meas. Sci. Technol. 1996, 7 (3), 436. DOI: https://doi.org/10.1088/0957-0233/7/3/027
- 40 P. Marchot, D. Toye, M. Crine, A.-M. Pelsser, G. L'homme, Chem. Eng. Res. Des. 1999, 77 (6), 511–518. DOI: https://doi.org/10.1205/026387699526548
- 41 C. E. Schmit, D. B. Cartmel, R. Eldridge, Chem. Eng. Sci. 2001, 56 (11), 3431–3441. DOI: https://doi.org/10.1016/S0009-2509(01)00036-7
- 42 A. Janzen, J. Steube, S. Aferka, E. Y. Kenig, M. Crine, P. Marchot, D. Toye, Chem. Eng. Sci. 2013, 102, 451–460. DOI: https://doi.org/10.1016/j.ces.2013.08.035
- 43 S. Schug, W. Arlt, Chem. Ing. Tech. 2017, 89 (7), 949–955. DOI: https://doi.org/10.1002/cite.201600110
- 44 Z. Wang, A. Afacan, K. Nandakumar, K. T. Chuang, Chem. Eng. Process. 2001, 40 (3), 209–219. DOI: https://doi.org/10.1016/S0255-2701(00)00108-2
- 45 F. Yin, A. Afacan, K. Nandakumar, K. T. Chuang, Chem. Eng. Process. 2002, 41 (5), 473–483. DOI: https://doi.org/10.1016/S0255-2701(01)00167-2
- 46 M. Fourati, V. Roig, L. Raynal, Chem. Eng. Sci. 2012, 80, 1–15. DOI: https://doi.org/10.1016/j.ces.2012.05.031
- 47 M. Basden, R. B. Eldridge, J. Farone, E. Feng, D. S. Hussey, D. L. Jacobson, Ind. Eng. Chem. Res. 2013, 52 (48), 17263–17269. DOI: https://doi.org/10.1021/ie402574x
- 48 D. Mewes, W. Ostendorf, Chem. Ing. Tech. 1983, 55 (11), 856–864. DOI: https://doi.org/10.1002/cite.330551110
- 49 S. Uchida, S. Fujita, J. Soc. Chem. Ind., Jpn. 1938, 41 (Suppl.), 275B–288B. DOI: https://doi.org/10.1246/nikkashi1898.41.Supplement2_269B
- 50 P. J. Hoek, J. A. Wesselingh, F. J. Zuiderweg, Chem. Eng. Res. Des. 1986, 64, 431–449.
- 51 K. Ter Veer, H. W. van der Klooster, A. Drinkenburg, Chem. Eng. Sci. 1980, 35 (3), 759–761. DOI: https://doi.org/10.1016/0009-2509(80)80031-5
- 52SICK AG, Patent , 2013. DE202013101738 U1
- 53 W. Bohl, W. Elmendorf, Technische Strömungslehre, 15th ed., Vogel Fachbuch Kamprath-Reihe, Vogel, Würzburg 2014.
- 54 H. C. Groenhof, S. Stemerding, Chem. Ing. Tech. 1977, 49 (10), 835. DOI: https://doi.org/10.1002/cite.330491015
- 55www.apt.mw.tum.de/maldistribution
- 56 A. Wild, V. Engel, ProcessNet-Fachausschuss Fluidverfahrenstechnik, Karlsruhe, July 2007.