Enhanced Droplet Size Control in Liquid-Liquid Emulsions Obtained in a Wire-Guided X-Mixer
Thapanee Bangjang
Kasetsart University, Faculty of Engineering, Department of Chemical Engineering, 50 Paholyotin Rd., 10900 Bangkok, Thailand
University of Warwick, School of Engineering, Library Road, CV4 7AL Coventry, United Kingdom
Search for more papers by this authorCorresponding Author
Nikolay Cherkasov
University of Warwick, School of Engineering, Library Road, CV4 7AL Coventry, United Kingdom
Correspondence: Dr. Nikolay Cherkasov ([email protected]), Prof. Evgeny V. Rebrov ([email protected]), University of Warwick, School of Engineering, Library Road, Coventry CV4 7AL, United Kingdom.Search for more papers by this authorPetr Denissenko
University of Warwick, School of Engineering, Library Road, CV4 7AL Coventry, United Kingdom
Search for more papers by this authorAttasak Jaree
Kasetsart University, Faculty of Engineering, Department of Chemical Engineering, 50 Paholyotin Rd., 10900 Bangkok, Thailand
Kasetsart University, Faculty of Engineering, Center for Advanced Studies in Industrial Technology, 50 Ngamwongwan Rd. Chatuchak, 10900 Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Evgeny V. Rebrov
University of Warwick, School of Engineering, Library Road, CV4 7AL Coventry, United Kingdom
Tver State Technical University, Department of Biotechnology and Chemistry, Nab. A. Nikitina 22, 170026 Tver, Russia
Correspondence: Dr. Nikolay Cherkasov ([email protected]), Prof. Evgeny V. Rebrov ([email protected]), University of Warwick, School of Engineering, Library Road, Coventry CV4 7AL, United Kingdom.Search for more papers by this authorThapanee Bangjang
Kasetsart University, Faculty of Engineering, Department of Chemical Engineering, 50 Paholyotin Rd., 10900 Bangkok, Thailand
University of Warwick, School of Engineering, Library Road, CV4 7AL Coventry, United Kingdom
Search for more papers by this authorCorresponding Author
Nikolay Cherkasov
University of Warwick, School of Engineering, Library Road, CV4 7AL Coventry, United Kingdom
Correspondence: Dr. Nikolay Cherkasov ([email protected]), Prof. Evgeny V. Rebrov ([email protected]), University of Warwick, School of Engineering, Library Road, Coventry CV4 7AL, United Kingdom.Search for more papers by this authorPetr Denissenko
University of Warwick, School of Engineering, Library Road, CV4 7AL Coventry, United Kingdom
Search for more papers by this authorAttasak Jaree
Kasetsart University, Faculty of Engineering, Department of Chemical Engineering, 50 Paholyotin Rd., 10900 Bangkok, Thailand
Kasetsart University, Faculty of Engineering, Center for Advanced Studies in Industrial Technology, 50 Ngamwongwan Rd. Chatuchak, 10900 Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Evgeny V. Rebrov
University of Warwick, School of Engineering, Library Road, CV4 7AL Coventry, United Kingdom
Tver State Technical University, Department of Biotechnology and Chemistry, Nab. A. Nikitina 22, 170026 Tver, Russia
Correspondence: Dr. Nikolay Cherkasov ([email protected]), Prof. Evgeny V. Rebrov ([email protected]), University of Warwick, School of Engineering, Library Road, Coventry CV4 7AL, United Kingdom.Search for more papers by this authorAbstract
The droplet size in a liquid-liquid emulsion can be controlled by placing a metal wire along the centerline of an X-mixer. Droplets gradually form when flowing along the wire, with droplet separation occurring at the tip of the wire rather than at the channel intersection in the X-mixer. The droplet size is now defined by the Plateau-Rayleigh instability developing in the axisymmetric annular flow region rather than by a sophisticated and hardly predictable three-dimensional flow at the channel intersection. The wire-guided droplet formation allows for fine control of the droplet size by changing the wire diameter, the position of the wire tip, and the flow rates. Further control of the droplet size can be achieved by adjusting the surface tension by adding a surfactant.
Supporting Information
Filename | Description |
---|---|
ceat201800440-sup-0001-misc_information.pdf48.4 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 W. L. Chou, P. Y. Lee, C. L. Yang, W. Y. Huang, Y. S. Lin, Micromachines 2015, 6 (9), 1249–1271. DOI: https://doi.org/10.3390/mi6091249
- 2 S.-Y. Teh, R. Lin, L.-H. Hung, A. P. Lee, Lab Chip 2008, 8 (2), 198–220. DOI: https://doi.org/10.1039/b715524g
- 3 A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, A. J. deMello, Lab Chip 2008, 8 (8), 1244. DOI: https://doi.org/10.1039/b806405a
- 4 M. Boutonnet, M. Sanchez-Dominguez, Catal. Today 2017, 285, 89–103. DOI: https://doi.org/10.1016/j.cattod.2016.12.047
- 5 W. Zhu, C. Guo, A. Yu, Y. Gao, F. Cao, G. Zhai, Int. J. Pharm. 2009, 378 (1–2), 152–158. DOI: https://doi.org/10.1016/j.ijpharm.2009.05.019
- 6 H. Chen, X. Chang, D. Du, J. Li, H. Xu, X. Yang, Int. J. Pharm. 2006, 315 (1–2), 52–58. DOI: https://doi.org/10.1016/j.aca.2005.10.016
- 7 A. A. Maan, A. Nazir, M. K. I. Khan, R. Boom, K. Schroen, J. Food Eng. 2015, 147, 1–7. DOI: https://doi.org/10.1016/j.jfoodeng.2014.09.021
- 8 A. Bera, T. Kumar, K. Ojha, A. Mandal, Fuel 2014, 121, 198–207. DOI: https://doi.org/10.1016/j.fuel.2013.12.051
- 9 P. Lisk, E. Bonnot, M. T. Rahman, R. Pollard, R. Bowman, V. Degirmenci, E. V. Rebrov, Chem. Eng. J. 2016, 306, 352–361. DOI: https://doi.org/10.1016/j.cej.2016.07.059
- 10 J. Floury, A. Desrumaux, J. Lardières, Innovative Food Sci. Emerging Technol. 2000, 1 (2), 127–134. DOI: https://doi.org/10.1016/S1466-8564(00)00012-6
- 11 N. Arpornpong, C. Attaphong, A. Charoensaeng, D. A. Sabatini, S. Khaodhiar, Fuel 2014, 132, 101–106. DOI: https://doi.org/10.1016/j.fuel.2014.04.068
- 12 R. Foudazi, S. Qavi, I. Masalova, A. Y. Malkin, Adv. Colloid Interface Sci. 2015, 220, 78–91. DOI: https://doi.org/10.1016/j.cis.2015.03.002
- 13 J. S. Sander, A. R. Studart, R. Studart, Soft Matter 2014, 10 (1), 60–68. DOI: https://doi.org/10.1039/C3SM51900G
- 14 S. M. Joscelyne, G. Trägårdh, J. Membr. Sci. 2000, 169 (1), 107–117. DOI: https://doi.org/10.1016/S0376-7388(99)00334-8
- 15 A. Montillet, S. Nedjar, M. Tazerout, Fuel 2013, 106, 410–416. DOI: https://doi.org/10.1016/j.fuel.2012.11.018
- 16 S. R. Kosvintsev, G. Gasparini, R. G. Holdich, J. Membr. Sci. 2008, 313 (1–2), 182–189. DOI: https://doi.org/10.1016/j.memsci.2008.01.009
- 17 E. Egidi, G. Gasparini, R. G. Holdich, G. T. Vladisavljević, S. R. Kosvintsev, J. Membr. Sci. 2008, 323 (2), 414–420. DOI: https://doi.org/10.1016/j.memsci.2008.06.047
- 18 C. N. Baroud, F. Gallaire, R. Dangla, Lab Chip 2010, 10 (16), 2032–2045. DOI: https://doi.org/10.1039/c001191f
- 19 S. L. Anna, N. Bontoux, H. A. Stone, Appl. Phys. Lett. 2003, 82 (3), 364–366. DOI: https://doi.org/10.1063/1.1537519
- 20 P. Zhu, L. Wang, Lab Chip 2017, 17 (1), 34–75. DOI: https://doi.org/10.1039/C6LC01018K
- 21 A. S. Utada, A. Fernandez-Nieves, H. A. Stone, D. A. Weitz, Phys. Rev. Lett. 2007, 99 (9), 094502. DOI: https://doi.org/10.1103/PhysRevLett.99.094502
- 22 W.-C. Jeong, J.-M. Lim, J.-H. Choi, J.-H. Kim, Y.-J. Lee, S.-H. Kim, G. Lee, J.-D. Kim, G.-R. Yi, S.-M. Yang, Lab Chip 2012, 12 (8), 1446–1453. DOI: https://doi.org/10.1039/c2lc00018k
- 23 W.-A. C. Bauer, M. Fischlechner, C. Abell, W. T. S. Huck, Lab Chip 2010, 10 (14), 1814–1819. DOI: https://doi.org/10.1039/c004046k
- 24 N.-N. Deng, S.-X. Sun, W. Wang, X.-J. Ju, R. Xie, L.-Y. Chu, Lab Chip 2013, 13 (18), 3653–3657. DOI: https://doi.org/10.1039/c3lc50533b
- 25 T. Nisisako, T. Torii, Lab Chip 2008, 8 (2), 287–293. DOI: https://doi.org/10.1039/B713141K
- 26 H.-H. Jeong, V. R. Yelleswarapu, S. Yadavali, D. Issadore, D. Lee, Lab Chip 2015, 15 (23), 4387–4392. DOI: https://doi.org/10.1039/C5LC01025J
- 27 D. Conchouso, D. Castro, S. A. Khan, I. G. Foulds, Lab Chip 2014, 14 (16), 3011–3020. DOI: https://doi.org/10.1039/C4LC00379A
- 28 C. Malafosse, J. Blanco, N. le Sauze, K. Loubière, J. Ollagnier, H. Rolland, A. Pierre, L. Prat, Chem. Eng. Technol. 2018, 41 (10), 1965–1974. DOI: https://doi.org/10.1002/ceat.201800063
- 29 H. Matsuda, K. Ochi, Fluid Phase Equilib. 2004, 224 (1), 31–37. DOI: https://doi.org/10.1016/J.FLUID.2004.05.006
- 30 M. Al-Rawashdeh, L. J. M. Fluitsma, T. A. Nijhuis, E. V. Rebrov, V. Hessel, J. C. Schouten, Chem. Eng. J. 2012, 181–182, 549–556. DOI: https://doi.org/10.1016/j.cej.2011.11.086
- 31 M. Al-Rawashdeh, F. Yue, N. G. Patil, T. A. Nijhuis, V. Hessel, J. C. Schouten, E. V. Rebrov, AIChE J. 2014, 60 (5), 1941–1952. DOI: https://doi.org/10.1002/aic.14443
- 32 Y. Su, K. Kuijpers, V. Hessel, T. Noël, React. Chem. Eng. 2016, 1 (1), 73–81. DOI: https://doi.org/10.1039/C5RE00021A
- 33 C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 2012, 9 (7), 671–675. DOI: https://doi.org/10.1038/nmeth.2089
- 34 M. L. Lowe, P. H. Kutt, Exp. Fluids 1992, 13, 315–320. DOI: https://doi.org/10.1007/BF00209503
- 35 R. Budwig, Exp. Fluids 1994, 17 (5), 350–355. DOI: https://doi.org/10.1007/BF01874416
- 36 T. Nisisako, T. Torii, T. Higuchi, Lab Chip 2002, 2 (1), 24–26. DOI: https://doi.org/10.1039/B108740C
- 37 P. Tabeling, Lab Chip 2009, 9 (17), 2428–2436. DOI: https://doi.org/10.1039/b904937c
- 38
P. Tabeling, Introduction to Microfluidics, Oxford University Press, Oxford
2005.
10.1093/oso/9780198568643.001.0001 Google Scholar
- 39 Y. Lu, T. Fu, C. Zhu, Y. Ma, H. Z. Li, Microfluid. Nanofluid. 2014, 16 (6), 1047–1055. DOI: https://doi.org/10.1007/s10404-013-1274-x
- 40 T. Fu, Y. Ma, D. Funfschilling, H. Z. Li, Chem. Eng. Sci. 2009, 64 (10), 2392–2400. DOI: https://doi.org/10.1016/j.ces.2009.02.022
- 41 V. van Steijn, M. T. Kreutzer, C. R. Kleijn, Chem. Eng. Sci. 2007, 62 (24), 7505–7514. DOI: https://doi.org/10.1016/j.ces.2007.08.068
- 42 C. X. Zhao, A. P. J. Middelberg, Chem. Eng. Sci. 2011, 66 (7), 1394–1411. DOI: https://doi.org/10.1016/j.ces.2010.08.038
- 43 Z. Z. Chong, S. H. Tan, A. M. Gañán-Calvo, S. B. Tor, N. H. Loh, N.-T. Nguyen, Lab Chip 2016, 16 (1), 35–58. DOI: https://doi.org/10.1039/C5LC01012H
- 44 H. Huang, X. He, Lab Chip 2015, 15 (21), 4197–4205. DOI: https://doi.org/10.1039/C5LC00730E
- 45 P. Garstecki, M. J. Fuerstman, H. A. Stone, G. M. Whitesides, Lab Chip 2006, 6 (3), 437–446. DOI: https://doi.org/10.1039/b510841a
- 46 V. Cristini, Y.-C. Tan, Lab Chip 2004, 4 (4), 257–264. DOI: https://doi.org/10.1039/B403226H
- 47
L. Rayleigh, Proc. R. Soc. London
1879, 29 (196–199), 71–97. DOI: https://doi.org/10.1098/rspl.1879.0015
10.1098/rspl.1879.0015 Google Scholar
- 48 S. Atreya, P. H. Steen, Proc. R. Soc., Ser. A 2002, 458 (2027), 2645–2669. DOI: https://doi.org/10.1098/rspa.2002.0989