Economic and Risk Analyses of an Industrial N,N-Dimethylformamide Recovery Process
Bin Shi
Wuhan University of Technology, Department of Chemical Engineering, 430070 Wuhan, China
Search for more papers by this authorXiao Xu He
Wuhan University of Technology, Department of Chemical Engineering, 430070 Wuhan, China
Search for more papers by this authorCorresponding Author
Wei Wu
Wuhan University of Technology, Department of Chemical Engineering, 430070 Wuhan, China
National Cheng Kung University, Department of Chemical Engineering, 70101 Tainan, Taiwan
Correspondence: Wei Wu ([email protected]), National Cheng Kung University, Department of Chemical Engineering, Tainan 70101, Taiwan.Search for more papers by this authorChu Li Hsien
National Cheng Kung University, Department of Chemical Engineering, 70101 Tainan, Taiwan
Search for more papers by this authorBin Shi
Wuhan University of Technology, Department of Chemical Engineering, 430070 Wuhan, China
Search for more papers by this authorXiao Xu He
Wuhan University of Technology, Department of Chemical Engineering, 430070 Wuhan, China
Search for more papers by this authorCorresponding Author
Wei Wu
Wuhan University of Technology, Department of Chemical Engineering, 430070 Wuhan, China
National Cheng Kung University, Department of Chemical Engineering, 70101 Tainan, Taiwan
Correspondence: Wei Wu ([email protected]), National Cheng Kung University, Department of Chemical Engineering, Tainan 70101, Taiwan.Search for more papers by this authorChu Li Hsien
National Cheng Kung University, Department of Chemical Engineering, 70101 Tainan, Taiwan
Search for more papers by this authorAbstract
The industrial N,N-dimethylformamide (DMF) recovery plant is usually based on a two-column sequence (TCS) and the capacity of the wastewater treatment process is larger than 2000 kg h−1. Here, a dividing-wall column (DWC)-based DMF recovery plant is proposed. The DWC avoids the remixing effect and reduces the utility duties by about 18.1 % and the CO2 emissions by 15.2 %, compared to the TCS. The DWC effectively decreases the total annual cost by 3.4 % compared to that of the TCS and achieves a profitability index of 2.19 and an internal rate of return of 40.45 %. By Monte Carlo risk analysis, the DWC can increase the chance of earning the profit by up to 16 % compared to the TCS.
Supporting Information
Filename | Description |
---|---|
ceat201800216-sup-0001-misc_information.pdf252.8 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 H. Kencse, J. Manczinger, Z. Szitkai, P. Mizsey, Period. Polytech., Chem. Eng. 2007, 51, 11–16.
- 2 S. Zhao, X. Song, N. Pei, J. Zhang, S. Liu, Chin. J. Chem. Eng. 2008, 16, 461–464.
- 3 S. Zhao, X. Song, J. Zhang, S. Liu, N. Pei, Chem. Ind. Eng. Prog. 2007, 26, 1347–1350, (in Chinese).
- 4 Q. Zhang, R. Xu, P. Xu, R. Chen, Q. He, J. Zhong, X. Gu, Desalination 2014, 346, 1–8. DOI: https://doi.org/10.1016/j.desal.2014.05.006
- 5 Y. Chen, J. Yang, M. Yu, W. Chen, Comp. Appl. Chem. 2013, 30, 167–170 (in Chinese).
- 6 X. Gao, Z. Ma, J. Ma, L. Yang, Energy Technol. 2014, 2, 250–256. DOI: https://doi.org/10.1002/ente.201300141
- 7 R. Premkumar, G. P. Rangaiah, Chem. Eng. Res. Des. 2009, 87, 47–60. DOI: https://doi.org/10.1016/j.cherd.2008.06.013
- 8 M. Aurangzed, A. K. Jana, Appl. Therm. Eng. 2016, 106, 1033–1041. DOI: https://doi.org/10.1016/j.applthermaleng.2016.06.079
- 9 F. O. Barroso-Muñoz, S. Hernandez, J. G. Segovia-Hernandez, H. Hernandez-Escoto, V. Rico-Eamirez, R.-H. Chavez, Chem. Eng. Technol. 2011, 34, 746–750. DOI: https://doi.org/10.1002/ceat.201000388
- 10 L. F. Cameretti, D. Demicoli, R. Meier, Chem. Eng. Res. Des. 2015, 99, 120–124. DOI: https://doi.org/10.1016/j.cherd.2015.02.001
- 11 J. Zhai, Y. Liu, L. Li, Y. Zhu, W. Zhong, L. Sun, Chem. Eng. Res. Des. 2015, 102, 138–149. DOI: https://doi.org/10.1016/j.cherd.2015.06.020
- 12 Y. Y. Loy, X. L. Lee, G. P. Rangaiah, Sep. Purif. Technol. 2015, 149, 413–427. DOI: https://doi.org/10.1016/j.seppur.2015.06.007
- 13 C. O. Okoli, T. A. Adams II, Chem. Eng. Proc. 2015, 95, 302–316. DOI: https://doi.org/10.1016/j.cep.2015.07.002
- 14 Q. H. Ng, S. Sharma, G. P. Rangaiah, Chem. Eng. Res. Des. 2017, 118, 142–157. DOI: https://doi.org/10.1016/j.cherd.2016.10.046
- 15 M. Schroder, C. Ehlers, G. Fieg, Chem. Eng. Technol. 2016, 39, 2323–2338. DOI: https://doi.org/10.1002/ceat.201500722
- 16 L. Q. Minh, T. N. Pham, N. V. D. Long, J. Shin, M. Lee, Comput. Chem. Eng. 2018, 110, 93–105. DOI: https://doi.org/10.1016/j.compchemeng.2017.12.009
- 17 S. Sharma, D. S. Patle, A. P. Gadhamsetti, S. Pandit, D. Manca, G. S. Nirmala, Chem. Eng. Proc. 2018, 123, 204–213. DOI: https://doi.org/10.1016/j.cep.2017.11.016
- 18 U. Abubakar, S. Sriramula, N. C. Renton, Sustainable Energy Technol. Assess. 2015, 9, 1–11. DOI: https://doi.org/10.1016/j.seta.2014.10.002
- 19 T. Seifert, J. M. Elischewski, S. Sievers, F. Stenger, B. Hamers, M. Priske, M. Becker, R. Franke, G. Schembecker, C. Bramsiepe, Chem. Eng. Process. 2015, 95, 124–134. DOI: https://doi.org/10.1016/j.cep.2015.05.010
- 20 C. H. Kuo, The study of a class of high-purity dimethylformamide (DMF) recovery control systems, Master Thesis, National Cheng Kung University, Tainan City 2014 (in Chinese).
- 21
K. C. Seavey, Y. A. Liu, Step-Growth Polymerization Process Modeling and Product Design, John Wiley & Sons, Hoboken
2008.
10.1002/9780470292488 Google Scholar
- 22http://dechema.de/en/CDS.html (Accessed in 2013)
- 23 N. Ramírez-Corona, A. Jiménez-Gutiérrez, A. Castro-Agüero, V. Rico-Ramírez, Chem. Eng. Res. Des. 2010, 88, 1405–1418. DOI: https://doi.org/10.1016/j.cherd.2010.02.020
- 24 H. Ling, Z. Cai, H. Wu, J. Wang, B. Shen, Ind. Eng. Chem. Res. 2011, 50, 12694–12705. DOI: https://doi.org/10.1021/ie201610g
- 25 Y. C. Wu, H. Y. Lee, H. P. Huang, I. L. Chien, Ind. Eng. Chem. Res. 2014, 53, 1537–1552. DOI: https://doi.org/10.1021/ie403136m
- 26 M. Gadalla, Ž. Olujić, M. Jobson, R. Smith, Energy 2006, 31, 2398–2408. DOI: https://doi.org/10.1016/j.energy.2005.10.030
- 27 J. Zhai, Y. Liu, L. Li, Y. Zhu, W. Zhong, L. Sun, Chem. Eng. Res. Des. 2015, 102, 138–149. DOI: https://doi.org/10.1016/j.cherd.2015.06.020
- 28http://www.podravje.eu/11249/marshall-and-swift-cost-index-2012.html (Accessed in 2012)
- 29
W. L. Luyben, Distillation Design and Control Using Aspen Simulation, John Wiley & Sons, Hoboken
2013.
10.1002/9781118510193 Google Scholar
- 30 J. M. Douglass, Conceptual Design of Chemical Processes, McGraw-Hill, New York 1988.
- 31 W. Seader, J. Lewin, S. Widagdo, Product & Process Design Principles, John Wiley & Sons, New York 2004.