Spatially Resolved Characterization of the Gas Propagator in Monolithic Structured Catalysts Using NMR Diffusiometry
Corresponding Author
Mojtaba Mirdrikvand
University of Bremen, Department of Chemistry, In vivo MR Group, Leobener Strasse 7, 28359 Bremen, Germany
Correspondence: Mojtaba Mirdrikvand ([email protected]), University of Bremen, Department of Chemistry, In vivo MR Group, Leobener Strasse 7, 28359 Bremen, Germany.Search for more papers by this authorJan Ilsemann
University of Bremen, Institute of Applied and Physical Chemistry, Department of Chemistry, Leobener Strasse 6, 28359 Bremen, Germany
Search for more papers by this authorJorg Thöming
University of Bremen, Center of Environmental Research and Sustainable Technology (UFT), Leobener Strasse 6, 28359 Bremen, Germany
Search for more papers by this authorWolfgang Dreher
University of Bremen, Department of Chemistry, In vivo MR Group, Leobener Strasse 7, 28359 Bremen, Germany
Search for more papers by this authorCorresponding Author
Mojtaba Mirdrikvand
University of Bremen, Department of Chemistry, In vivo MR Group, Leobener Strasse 7, 28359 Bremen, Germany
Correspondence: Mojtaba Mirdrikvand ([email protected]), University of Bremen, Department of Chemistry, In vivo MR Group, Leobener Strasse 7, 28359 Bremen, Germany.Search for more papers by this authorJan Ilsemann
University of Bremen, Institute of Applied and Physical Chemistry, Department of Chemistry, Leobener Strasse 6, 28359 Bremen, Germany
Search for more papers by this authorJorg Thöming
University of Bremen, Center of Environmental Research and Sustainable Technology (UFT), Leobener Strasse 6, 28359 Bremen, Germany
Search for more papers by this authorWolfgang Dreher
University of Bremen, Department of Chemistry, In vivo MR Group, Leobener Strasse 7, 28359 Bremen, Germany
Search for more papers by this authorAbstract
Gas diffusivity measurements in opaque porous media were performed using nuclear magnetic resonance. An optimized pulsed-field gradient stimulated echo method with free volume selection was used to investigate the propagator of thermally polarized methane gas within commercial monolithic catalyst supports. Since signal losses due to T2 relaxation were minimized by using a short echo time, diffusion processes could be characterized by the measured propagator functions and effective diffusion coefficients were determined for a broad range of observation times and in different spatial directions. The study of this noninvasive characterization of gas diffusion found a clear effect of the monolith type and its pore size and coating on the effective gas diffusion coefficient and the apparent tortuosity for a given observation time.
Supporting Information
Filename | Description |
---|---|
ceat201800201-sup-0001-misc_information.pdf16.2 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 S. L. Codd, S. A. Altobelli, J. Magn. Reson. 2003, 163 (1), 16–22. DOI: https://doi.org/10.1016/S1090-7807(03)00111-3
- 2
W. S. Price, NMR Studies of Translational Motion: Principles and Applications, Cambridge University Press, Cambridge
2009.
10.1017/CBO9780511770487 Google Scholar
- 3 J. Wood, L. F. Gladden, Appl. Catal., A 2003, 249 (2), 241–253. DOI: https://doi.org/10.1016/S0926-860X(03)00200-X
- 4 E. O. Stejskal, J. E. Tanner, J. Chem. Phys. 1965, 42 (1), 288–292. DOI: https://doi.org/10.1063/1.1695690
- 5 R. Dawson, F. Khoury, R. Kobayashi, AIChE J. 1970, 16 (5), 725–729. DOI: https://doi.org/10.1002/aic.690160507
- 6 L. F. Gladden, J. Mitchell, New J. Phys. 2011, 13 (3), 035001. DOI: https://doi.org/10.1088/1367-2630/13/3/035001
- 7 M. V. Twigg, J. T. Richardson, Ind. Eng. Chem. Res. 2007, 46 (12), 4166–4177. DOI: https://doi.org/10.1021/ie061122o
- 8 G. Groppi, E. Tronconi, Catal. Today 2005, 105 (4), 297–304. DOI: https://doi.org/10.1016/j.cattod.2005.06.041
- 9 J. Große, B. Dietrich, H. Martin, M. Kind, J. Vicente, E. H. Hardy, Chem. Eng. Technol. 2008, 31 (2), 307–314. DOI: https://doi.org/10.1002/ceat.200700403
- 10 C. van Gulijk, M. J. G. Linders, T. Valdés-Solís, F. Kapteijn, Chem. Eng. J. 2005, 109 (1), 89–96. DOI: https://doi.org/10.1016/j.cej.2005.03.013
- 11 I. V. Koptyug, L. Y. Khitrina, V. N. Parmon, R. Z. Sagdeev, Magn. Reson. Imaging 2001, 19 (3–4), 531–534. DOI: https://doi.org/10.1016/S0730-725X(01)00286-7
- 12 J. Grosse, B. Dietrich, G. Garrido, P. Habisreuther, K. Bettina, Ind. Eng. Chem. Res. 2009, 48 (23), 10395–10401. DOI: https://doi.org/10.1021/ie900651c
- 13 A. A. Lysova, J. A. Bergwerff, L. Espinosa-Alonso, B. M. Weckhuysen, I. V. Koptyug, Appl. Catal., A 2010, 374 (1–2), 126–136. DOI: https://doi.org/10.1016/j.apcata.2009.11.038
- 14 I. V. Koptyug, L. Y. Ilyina, A. V. Matveev, R. Z. Sagdeev, V. N. Parmon, S. A. Altobelli, Catal. Today 2001, 69 (1–4), 385–392. DOI: https://doi.org/10.1016/S0920-5861(01)00396-0
- 15 X. H. Ren, M. Bertmer, S. Stapf, Appl. Catal., A 2002, 228 (1–2), 39–52. DOI: https://doi.org/10.1016/S0926-860X(01)00958-9
- 16 T. G. A. Youngs, D. Weber, L. F. Gladden, C. Hardacre, J. Phys. Chem. 2009, 113 (51), 21342–21352. DOI: https://doi.org/10.1021/jp906677c
- 17 M. H. Haider, C. D'Agostino, N. F. Dummer, et al., Chemistry 2014, 20, 1743–1752. DOI: https://doi.org/10.1002/chem.201302348
- 18 C. D'Agostino, Y. Ryabenkova, P. J. Miedziak, et al., Catal. Sci. Technol. 2014, 4, 1313–1322. DOI: https://doi.org/10.1039/C4CY00027G
- 19 Y. Zhang, L. Xiao, G. Liao, Y. Q. Song, J. Magn. Reson. 2016, 269, 196–202. DOI: https://doi.org/10.1016/j.jmr.2016.06.013
- 20 M. Terekhov, D. Höpfel, Chem. Eng. Technol. 2006, 29 (7), 807–815. DOI: https://doi.org/10.1002/ceat.200600053
- 21 E. H. Hardy, Chem. Eng. Technol. 2006, 29 (7), 785–795. DOI: https://doi.org/10.1002/ceat.200600046
- 22 A. Caprihan, C. F. M. Clewett, D. O. Kuethe, E. Fukushima, S. J. Glass, Magn. Reson. Imaging 2001, 19 (3–4), 311–317. DOI: https://doi.org/10.1016/S0730-725X(01)00242-9
- 23 S. D. Beyea, S. L. Codd, D. O. Kuethe, E. Fukushima, Magn. Reson. Imaging 2003, 21 (3–4), 201–205. DOI: https://doi.org/10.1016/S0730-725X(03)00125-5
- 24 I. V. Koptyug, S. A. Altobelli, E. Fukushima, A. V. Matveev, R. Z. Sagdeev, J. Magn. Reson. 2000, 147 (1), 36–42. DOI: https://doi.org/10.1006/jmre.2000.2186
- 25 J. E. Tanner, J. Chem. Phys. 1970, 52 (5), 2523–2526. DOI: https://doi.org/10.1063/1.1673336
- 26 M. Valentini, Organometallics 2000, 19 (13), 2551–2555. DOI: https://doi.org/10.1021/om000104i
- 27 F. Stallmach, J. Kärger, Adsorption 1999, 133 (2), 117–133. DOI: https://doi.org/10.1023/A:1008949607093
- 28 N. Hedin, G. J. DeMartin, K. G. Strohmaier, S. C. Reyes, Microporous Mesoporous Mater. 2007, 98 (1–3), 182–188. DOI: https://doi.org/10.1016/j.micromeso.2006.08.017
- 29 A. Haase, J. Frahm, D. Matthaei, W. Hänicke, K. D. Merboldt, J. Magn. Reson. 1986, 67 (2), 258–266. DOI: https://doi.org/10.1016/0022-2364(86)90433-6
- 30 R. Kimmich, F. Winter, W. Nusser, K. H. Spohn, J. Magn. Reson. 1986, 68 (2), 263–282. DOI: https://doi.org/10.1016/0022-2364(86)90243-X
- 31
I. Tkáč, Z. Starčuk, I. Y. Choi, R. Gruetter, Magn. Reson. Med.
1999, 41 (4), 649–656. DOI: https://doi.org/10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G
10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 32 D. G. Cory, A. N. Garroway, Magn. Reson. Med. 1990, 14 (3), 435–444. DOI: https://doi.org/10.1002/mrm.1910140303
- 33 P. T. Callaghan, D. MacGowan, K. J. Packer, F. O. Zelaya, J. Magn. Reson. 1990, 90 (1), 177–182. DOI: https://doi.org/10.1016/0022-2364(90)90376-K
- 34 B. Soher, D. Semanchuk, D. Todd, J. Steinberg, K. Young, 19th Annual Meeting ISMRM, Montréal, QC, May 2011.
- 35 J. Winkelmann, Gases in Gases, Liquids and Their Mixtures (Ed: M. D. Lechner), Springer, Basel 2007. DOI: https://doi.org/10.1007/978-3-540-49718-9
- 36 A. H. Kristensen, A. Thorbjørn, M. P. Jensen, M. Pedersen, P. Moldrup, J. Contam. Hydrol. 2010, 115 (1–4), 26–33. DOI: https://doi.org/10.1016/j.jconhyd.2010.03.003
- 37 P. Habisreuther, N. Djordjevic, N. Zarzalis, Chem. Eng. Sci. 2009, 64 (23), 4943–4954. DOI: https://doi.org/10.1016/j.ces.2009.07.033
- 38 J. Vicente, F. Topin, J.-V. Daurelle, Mater. Trans. 2006, 47 (9), 2195–2202. DOI: https://doi.org/10.2320/matertrans.47.2195
- 39 L. Kiewidt, Solid Sponges as Support for Heterogeneous Catalysts in Gas-Phase Reactions, Ph.D. Thesis, University of Bremen 2018.