Characteristics of Nitric Acid-Modified Carbon Nanotubes and Desalination Performance in Capacitive Deionization
Corresponding Author
Shenxu Bao
Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China
Wuhan University of Technology, Hubei Key Laboratory of Mineral Resources Processing and Environment, Luoshi Rd., 430070 Wuhan, China
Correspondence: Shenxu Bao ([email protected]), Yimin Zhang ([email protected]), Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China.Search for more papers by this authorJihua Duan
Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China
Search for more papers by this authorCorresponding Author
Yimin Zhang
Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China
Wuhan University of Technology, College of Resources and Environmental Engineering, Heping Ave., 430081 Wuhan, China
Wuhan University of Technology, Hubei Key Laboratory of Mineral Resources Processing and Environment, Luoshi Rd., 430070 Wuhan, China
Correspondence: Shenxu Bao ([email protected]), Yimin Zhang ([email protected]), Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China.Search for more papers by this authorCorresponding Author
Shenxu Bao
Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China
Wuhan University of Technology, Hubei Key Laboratory of Mineral Resources Processing and Environment, Luoshi Rd., 430070 Wuhan, China
Correspondence: Shenxu Bao ([email protected]), Yimin Zhang ([email protected]), Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China.Search for more papers by this authorJihua Duan
Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China
Search for more papers by this authorCorresponding Author
Yimin Zhang
Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China
Wuhan University of Technology, College of Resources and Environmental Engineering, Heping Ave., 430081 Wuhan, China
Wuhan University of Technology, Hubei Key Laboratory of Mineral Resources Processing and Environment, Luoshi Rd., 430070 Wuhan, China
Correspondence: Shenxu Bao ([email protected]), Yimin Zhang ([email protected]), Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Rd., 430070 Wuhan, China.Search for more papers by this authorAbstract
Multiwalled carbon nanotubes (MWCNTs) were treated by nitric acid to probe the effect of nitric acid modification on their properties and desalination performance in capacitive deionization (CDI). The nitric acid modification exerts a slight influence on the morphologies, specific surface area, and pore properties of the MWCNTs but can increase the amount of oxygen-containing functional groups and then obviously enhance the specific capacitance of the electrodes. Thus, the desalination efficiency can be significantly improved as the modified MWCNTs serve as electrodes in CDI. The adsorption of salt ions on the original and modified MWCNT electrode is fitted well by the Freundlich isotherm other than the Langmuir isotherm.
Supporting Information
Filename | Description |
---|---|
ceat201700448-sup-0001-misc_information.pdf445.8 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. Mohamed, Z. Linda, J. Hazard. Mater. 2012, 4, 491–497.
- 2 S. Cheng, H. Gong, C. Li, B. Guo, P. Zhang, Proc. of the 11th Int. Conf. on Electrical Machines and Systems, World Publishing Corporation, Beijing 2008, 3854–3857.
- 3 Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, RSC Adv. 2015, 5, 15205–15225.
- 4 H. Li, L. Pan, C. Nie, Y. Liu, Z. Sun, J. Mater. Chem. 2012, 22, 15556–15561.
- 5 S. G. Mahendra, B. Chandrajit, Anal. Lett. 2016, 49, 1641–1655.
- 6 G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, Z. Zhao, J. Qiu, Electrochim. Acta 2012, 69, 65–70.
- 7 P. Xu, J. E. Drewes, D. Heil, G. Wang, Water Res. 2008, 42, 2605–2617.
- 8 C. H. Hou, N. L. Liu, H. L. Hsu, W. Den, Sep. Purif. Technol. 2014, 130, 7–14.
- 9 D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Nanoscale 2012, 4, 5440–5446.
- 10 H. Pan, J. Yang, S. Wang, Z. Xiong, W. Cai, J. Liu, J. Mater. Chem. A 2015, 3, 13827–13834.
- 11 Y. R. Nian, H. Teng, J. Electrochem. Soc. 2002, 149, A1008–A1014.
- 12 W. Huang, Y. Zhang, S. Bao, R. Cruz, S. Song, Desalination 2014, 340, 67–72.
- 13 B. S. Shen, W. J. Feng, J. W. Lang, R. T. Wang, Z. X. Tai, X. B. Yan, Acta Phys. Chim. Sin. 2012, 28, 1726–1732.
- 14 S. Chung, H. Kang, J. D. Ocon, J. K. Lee, J. Curr. Appl. Phys. 2015, 15 (11), 1539–1544.
- 15 C. M. Lastoskie, Stud. Surf. Sci. Catal. 2000, 128, 475–484.
- 16 J. Cravillon, S. Münzer, S. J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 2009, 21, 1410–1412.
- 17 J. Y. Choi, J. H. Choi, J. Ind. Eng. Chem. 2010, 16, 401–405.
- 18 R. K. Sharma, H. S. Oh, Y. G. Shul, H. Kim, Physica B 2008, 403, 1763–1769.
- 19 M. W. Ryoo, J. H. Kim, G. Seo, J. Colloid Interface Sci. 2003, 264, 414–419.
- 20 Y. Wimalasiri, L. Zou, Carbon 2013, 59, 464–471.
- 21 J. H. Chen, W. Z. Li, D. Z. Wang, S. X. Yang, J. G. Wen, Z. F. Ren, Carbon 2002, 40, 1193–1197.
- 22 C. Portet, P. L. Taberna, P. Simon, C. Laberty-Robert, Electrochim. Acta 2004, 49, 905–912.
- 23 B. Jia, L. Zou, Chem. Phys. Lett. 2012, 548, 23–28.
- 24 S. Iftekhar, M. U. Farooq, M. Sillanpää, M. B. Asif, R. Habib, Arab. J. Sci. Eng. 2017, 42, 235–240.
- 25 S. Bao, Y. Tang, Y. Zhang, L. Liang, Chem. Eng. Technol. 2016, 39, 1377–1392.
- 26 E. Nariyan, M. Sillanpää, C. Wolkersdorfer, Sep. Purif. Technol. 2017, 177, 363–373.