Enhanced BTX Production in Refineries with Sulfur Dioxide Oxidation by Thermal Integrated Model
Corresponding Author
Mohsen Karimi
University of Porto, Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, 4099-002 Porto, Portugal
Correspondence: Mohsen Karimi ([email protected]), University of Porto, Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, 4099-002 Porto, Portugal.Search for more papers by this authorMohammad Reza Rahimpour
Shiraz University, School of Chemical and Petroleum Engineering, Department of Chemical Engineering, Mollasadra Street, 71345 Shiraz, Iran
Search for more papers by this authorDavood Iranshahi
Amirkabir University of Technology (Tehran Polytechnic), Department of Chemical Engineering, No. 424, Hafez Avenue, 15914 Tehran, Iran
Search for more papers by this authorCorresponding Author
Mohsen Karimi
University of Porto, Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, 4099-002 Porto, Portugal
Correspondence: Mohsen Karimi ([email protected]), University of Porto, Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, Rua Dr. Roberto Frias, 4099-002 Porto, Portugal.Search for more papers by this authorMohammad Reza Rahimpour
Shiraz University, School of Chemical and Petroleum Engineering, Department of Chemical Engineering, Mollasadra Street, 71345 Shiraz, Iran
Search for more papers by this authorDavood Iranshahi
Amirkabir University of Technology (Tehran Polytechnic), Department of Chemical Engineering, No. 424, Hafez Avenue, 15914 Tehran, Iran
Search for more papers by this authorAbstract
More stringent environmental regulations as well as limitations of traditional energy sources lead to the development of innovative techniques to supply the required energy of different industries. Multifunctional autothermal reactors as a novel strategy in process integration technology have been introduced as a response to this requirement. The catalytic naphtha reforming process is one of the main processes in the refinery industries which demand several sources of energy to manage the existing reactions. Also, oxidization of sulfur dioxide to sulfur trioxide as a highly exothermic reaction is one of the typical solutions to reduce and control this greenhouse gas in various industries. According to the main aims of process integration and by considering environmental regulations, a novel thermal integration model is proposed. The results demonstrate the aromatic upgrading and high conversion of sulfur dioxide in this model.
Supporting Information
Filename | Description |
---|---|
ceat201700289-sup-0001-misc_information.pdf179.7 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. M. El-Halwagi, Sustainable Design Through Process Integration, 2nd ed., Elsevier, Amsterdam 2017.
- 2
M. M. El-Halwagi, JKSUS
2018, 30, 1. DOI: 10.1016/j.jksues.2018.01.001
10.1016/j.jksues.2018.01.001 Google Scholar
- 3 M. M. El-Halwagi, Clean Technol. Environ. Policy 2017, 19, 611–617.
- 4 F. Friedler, Appl. Therm. Eng. 2010, 30, 2270–2280.
- 5 R. Smith, Appl. Therm. Eng. 2000, 20, 1337–1345.
- 6 L. Lavric, V. Plesu, J. De Ruyck, Appl. Therm. Eng. 2005, 25, 1033–1044.
- 7 R. F. Dunn, M. M. El-Halwagi, J. Chem. Technol. Biotechnol. 2003, 78, 1011–1021.
- 8 M. Van Sint Annaland, H. A. R. Scholts, J. A. M. Kuipers, W. P. M. Van Swaaij, Chem. Eng. Sci. 2002, 57, 833–854.
- 9 R. C. Ramaswamy, P. A. Ramachandran, M. P. Duduković, Chem. Eng. Sci. 2008, 63, 1654–1667.
- 10 K. S. Patel, A. K. Sunol, Int. J. Hydrogen Energy 2007, 32, 2344–2358.
- 11 A. Vigneault, S. S. E. H. Elnashaie, J. R. Grace, Chem. Eng. Technol. 2012, 35, 1520–1533.
- 12 S. J. Smith, J. Van Aardenne, Z. Klimont, R. J. Andres, A. Volke, D. S. Arias, Atmos. Chem. Phys. 2011, 11, 1101–1116.
- 13 H. P. Tuan, H. G. Janssen, C. A. Cramers, J. High Resolut. Chromatogr. 1994, 17, 373–388.
- 14
Y. Suyadal, H. Oguz, Chem. Eng. Technol.
2000, 23, 7.
10.1002/1521-4125(200007)23:7<619::AID-CEAT619>3.0.CO;2-H Google Scholar
- 15 I. Iliuta, M. C. Iliuta, Chem. Eng. Technol. 1997, 20, 455–461.
- 16 R. Günther, J. C. Schöneberger, H. Arellano-Garcia, H. Thielert, G. Wozny, Comput. Aided Chem. Eng. 2012, 31, 1677–1681.
- 17 E. Alvarez, J. Blanco, C. Knapp, J. Olivares, L. Salvador, Catal. Today 2000, 59, 417–422.
- 18 P. Roy, A. Sardar, J. Chem. Eng. Process Technol. 2015, 6, 2.
- 19 J. P. Dunn, P. R. Koppula, H. G. Stenger, I. E. Wachs, Appl. Catal, B 1998, 19, 103–117.
- 20 E. I. Dobkina, S. M. Kuznetsova, L. A. Nefedova, S. A. Lavrishcheva, Russ. J. Appl. Chem. 2001, 74, 1129–1131.
- 21 K. T. Lee, S. Bhatia, A. R. Mohamed, Chem. Eng. Sci. 2005, 60, 3419–3423.
- 22 J. Naidoo, A. Goumri, P. Marshall, Proc. Combust. Inst. 2005, 30, 1219–1225.
- 23 T. L. Jorgensen, H. Livbjerg, P. Glarborg, Chem. Eng. Sci. 2007, 62, 4496–4499.
- 24 A. M. Aitani, Encyclopedia of Chemical Processing, Taylor and Francis, New York 2007.
- 25 A. M. Aitani, Catalytic Naphtha Reforming Science and Technology, Marcel Dekker, New York 2005.
- 26 J. Ancheyta-Juárez, E. Villafuerte-Macías, Energy Fuels 2000, 14, 1032–1037.
- 27 R. B. Smith, Chem. Eng. Prog. 1959, 55, 76–80.
- 28 J. W. Lee, Y. C. Ko, Y. K. Jung, K. S. Lee, E. S. Yoon, Comput. Chem. Eng. 1997, 21, 1105–1110.
- 29 U. Taskar, J. B. Riggs, AIChE J. 1997, 43, 740–753.
- 30 K. M. Liang, H. Guo, S. Pan, J. Zhejiang Univ. Sci. B 2005, 6, 590–596.
- 31 A. Kvartsov, E. Ivanchina, L. D'yakonova, S. Averin, Chem. Technol. Fuels Oils 2001, 37, 393–400.
- 32 W. Liu, X. Meng, X. Zhao, G. Wang, J. Gao, C. Xu, Energy Fuels 2009, 23, 5760–5764.
- 33 V. A. Mazzieri, C. L. Pieck, C. R. Vera, J. C. Yori, J. M. Grau, Catal. Today 2008, 133–135, 870–878.
- 34 H. S. Fogler, Elements of Chemical Reaction Engineering, 5th ed., Prentice Hall, Englewood Cliffs, NJ 2016.
- 35 F. Ullmann, W. Gerhartz, Y. S. Yamamoto, F. T. Campbell, R. Pfefferkorn, J. F. Rounsaville, Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim 1992.
- 36 W. Jaeger, V. Fattinger, T. Keilpart, H. J. Hamel, JOM 1999, 51 (5), 42–43.
- 37 G. F. Froment, K. B. Bischoff, Chemical Reactor Analysis and Design, Wiley, New York 1979.
- 38 W. L. McCabe, J. C. Smith, P. Harriott, Unit Operations of Chemical Engineering, McGraw Hill, New York 2001.